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Abstract

The quantum Euclidean spheres,SN−1
q , are (noncommutative) homogeneous spaces of quantum

orthogonal groups, SOq(N). The∗-algebraA(SN−1
q ) of polynomial functions on each of these is

given by generators and relations which can be expressed in terms of a self-adjoint, unipotent matrix.
We explicitly construct complete sets of generators for theK-theory (by nontrivial self-adjoint
idempotents and unitaries) and theK-homology (by nontrivial Fredholm modules) of the spheres
SN−1
q . We also construct the corresponding Chern characters in cyclic homology and cohomology

and compute the pairing ofK-theory withK-homology. On odd spheres (i.e., forN even) we exhibit
unbounded Fredholm modules by means of a natural unbounded operatorD which, while failing
to have compact resolvent, has bounded commutators with all elements in the algebraA(SN−1

q ).
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1. Introduction

There exists a growing literature devoted to the study of examples of “quantum” and
“noncommutative” spaces. In this paper we shall dissect one class of these, the so called
quantum Euclidean spheresSN−1

q . They were first introduced in[9] as homogeneous spaces
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of quantum orthogonal groups SOq(N), which areR-matrix deformations of the usual
orthogonal groups SO(N).

We shall regard the spheresSN−1
q as “noncommutative real affine varieties”. For such

an object,X, the algebraA(X) is a finitely presented∗-algebra. In contrast with classical
algebraic geometry, there does not in general exist a topological point setX. Nevertheless,
we regardX as a noncommutative space andA(X) as the algebra of polynomial functions
onX.

In the classical case, one can consider the algebra of continuous functions on the under-
lying topological space of an affine variety. IfX is bounded, then this is aC∗-algebra and
is the completion ofA(X). In general, one definesC(X) to be theC∗-algebraic comple-
tion of the∗-algebraA(X). To construct this, one considers all possible∗-representations
of A(X) on a countably infinite-dimensional Hilbert space. Then the norm onA(X) is
defined as the supremum of the norms in all these representations and theC∗-algebra
C(X) is the completion ofA(X) with respect to this norm. TheC∗-algebraC(X) has the
universal property that any∗-homomorphism fromA(X) to a separableC∗-algebra fac-
tors throughC(X). In particular, any∗-representation ofA(X) extends to a representation
of C(X).

For the noncommutative spaces at hand, the algebraA(SN−1
q ) was described in[12] by

means of a suitable self-adjoint idempotent (a matrix of functions whose square is itself). In
the present paper we improve on this by giving a clearer and nicer presentation ofA(SN−1

q )

in terms of a self-adjoint unipotent (a matrix of functions whose square is the identity)
which is defined recursively. We then exhibit all representations of the algebraA(SN−1

q )

which in turn extend to theC∗-algebraC(SN−1
q ).

The core of the paper is the study of generators of theK-homology andK-theory of the
spheresSN−1

q . TheK-theory classes will be given by means of self-adjoint idempotents
(naturally associated with the aforementioned unipotents) and of unitaries in algebras of
matrices overA(SN−1

q ). TheK-homology classes will be given as (homotopy classes of)
suitable 1-summable Fredholm modules.

For odd spheres (i.e., forN even) the oddK-homology generators are first given in
terms of unbounded Fredholm modules. These are given by means of a natural unbounded
operatorD which, while failing to have compact resolvent, has bounded commutators with
all elements in the algebraA(S2n+1

q ).
On the way to computing the pairing ofK-theory withK-homology, we will exhibit the

Chern characters of the generators of theK-theory andK-homology, as elements in the
cyclic homologyHC∗[A(SN−1

q )] and cyclic cohomologyHC∗[A(SN−1
q )], respectively.

Needless to say, the pairing is integral (it comes from a noncommutative index theorem).
Furthermore, the nonvanishing of the pairing will testify to the nontriviality of the elements
that we construct in bothK-homology andK-theory.

2. Quantum Euclidean spheres

As we have already mentioned, the quantum Euclidean spheres,SN−1
q , were introduced

in [9] as quantum homogeneous spaces of the quantum orthogonal groups, SOq(N), the
latter beingR-matrix deformations of usual orthogonal groups SO(N).
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We shall briefly recall that construction[1,12,15]. Let us start with the quantum Euclidean
spaceRN

q . The∗-algebraA(RN
q ) of its polynomial “functions” is generated by elements

{x̃0 = x̃∗0, xi, x
∗
i , i = 1, . . . , n} for N = 2n+1 while forN = 2n there is nõx0 (the reason

for the notatioñx0 will be clear shortly). These generators fulfill commutation relations:

xixj = qxjxi, 0 ≤ i < j ≤ n, x∗i xj = qxjx
∗
i , i 	= j, (2.1a)

[xi, x
∗
i ] =




[
1− q−2

1+ q−2ρi−1

]
r2
i−1 i > 1,

0 i = 1, N = 2n,

(1− q−1)x̃2
0 i = 1, N = 2n+ 1

(2.1b)

with ρi = (1/2) − i or ρi = 1− i, i = 1, . . . , n, according to whetherN is odd or even,
respectively. The elementsr2

i , i = 1, . . . , n, are given by

r2
i = q−2ρixi(xi)∗ + q−2ρi−1xi−1(xi−1)∗ + · · · + (xi−1)∗xi−1+ (xi)∗xi (2.2)

and one can prove thatr2 ≡ r2
n is central.

In the classical (q = 1) case, theser2
i ’s are simply sums of squares of coordinates and

fixing the value ofr2 corresponds to the definition of a sphere as the set of points at a fixed
distance from the origin.

In our case, by fixing the value ofr2 we get the quantum Euclidean sphereSN−1
q of the

corresponding “radius”. Thus, the quantum Euclidean sphereSN−1
q is naturally considered

as a quantum subspace of the quantum Euclidean spaceR
N
q and the algebraA(SN−1

q ) of
polynomial functions on it is a quotient of the algebraA(RN

q ) by the ideal generated by the
relation that fixes the radius. Furthermore, the natural coaction of SOq(N) onR

N
q :

δ : A(RN
q )→ A(SOq(N))⊗ A(RN

q ) (2.3)

preserves the radiusr2, δ(r2) = 1⊗ r2, and yields a coaction of SOq(N) onSN−1
q .

We can simplify the relations(2.1a) and (2.1b)by rescaling one generator,x0 := (1+
q−1)−1/2x̃0. It is also simpler to use rescaled “partial radii” which are related to ther2

i ’s by

r2
i = (1+ q−2ρi)si

and are given recursively by

si := si−1+ x∗i xi = q−2si−1+ xix
∗
i , s0 := x2

0. (2.4)

By using these new elementssi we can write the commutation relations of the generators
{x0 = x∗0, xi, x

∗
i , i = 1, . . . , n} of the algebraA(RN

q ) as

xixj = qxjxi, 0 ≤ i < j ≤ n, x∗i xj = qxjx
∗
i , i 	= j, (2.5a)

[xi, x
∗
i ] = (1− q−2)si−1 (2.5b)

with the understanding thatx0 = 0 if N = 2n. We see that the equality of the two formulae
for si in (2.4) is equivalent to the commutation relation(2.5b).
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GivenN, the algebrasA(SN−1
q ) for quantum spheres of different radii are isomorphic.

We are thus free to normalize the radius to the most convenient choice. This issn = 1
or equivalentlyr2 = 1+ q2n−1 or r2 = 1+ q2n−2 according to whetherN is odd (even
spheres) orN is even (odd spheres).

The elementssi ∈ A(S2n
q ) are self-adjoint and related as

0 ≤ s0 ≤ · · · ≤ sn−1 ≤ sn = 1. (2.6)

From the commutation relations(2.5a)it follows for i < j thatx∗i xixj = q2xjx
∗
i xi; on the

other handx∗jxjxi = xix
∗
jxj. With a little induction, we deduce that

sixj =


q2xjsi : i < j,

xjsi : i ≥ j,

six
∗
j =



q−2x∗j si : i < j,

x∗j si : i ≥ j

and that thesi’s are mutually commuting.
Looking at relations(2.5a) and (2.5b), we see that odd quantum Euclidean spheresS2n−1

q

are the same as the odd quantum spheres introduced in[18] (see also[19]) as noncommu-
tative homogeneous spaces of quantum unitary groups SUq(n).

To our knowledge this simple fact, which was observed during a conversation with
Bonechi and Dabrowski, has not been presented before. It extends the classical result that
odd-dimensional spheres are simultaneously homogeneous spaces of orthogonal and of
unitary groups.

The presentation of the algebraA(RN
q ) in [9] involved the square root of the deformation

parameterq; this must therefore be positive in that construction. In our presentation no
square roots are involved and we may take any value ofq ∈ R; however, we shall soon
see that we may restrict the values ofq without loss of generality, due to the occurrence of
natural isomorphisms.

In [12] it was shown that the defining relations of the algebraA(SN−1
q ) of polynomial

functions onSN−1
q are equivalent to the condition that a certain matrix overA(SN−1

q ) be
idempotent. This is also equivalent to the condition that another matrix be unipotent, as we
shall explain presently.

First consider the even spheresS2n
q for any integern > 0. The algebraA(S2n

q ) is generated
by elements{x0, xi, x

∗
i , i = 1, . . . , n}.

We recursively define self-adjoint matricesu(2n) ∈ Mat2n(C〈x0, xi, x
∗
i , i = 1, . . . , n〉)

for all n by

u(2n) :=

 q−1u(2n−2) xn

x∗n −u(2n−2)


 (2.7)

with u(0) = x0. The∗-algebraA(S2n
q ) is then defined by the relations thatu(2n) is unipotent,

u2
(2n) = 1, and self-adjoint,u∗(2n) = u(2n). That is, it is the quotient of the free∗-algebra on

2n+ 1 generators by these relations.
The self-adjointness relations merely give thatx∗i is the adjoint ofxi andx0 is self-adjoint.

Unipotency gives a matrix of 22n relations, although many of these are vacuous or redundant.
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These can be deduced inductively from(2.7)which gives

u2
(2n) =


 q−2u2

(2n−2) + xnx
∗
n q−1u(2n−2)xn − xnu(2n−2)

q−1x∗nu(2n−2) − u(2n−2)x
∗
n u2

(2n−2) + x∗nxn


 . (2.8)

The condition thatu2
(2n) = 1 means in particular thatu2

(2n) is diagonal with all the di-

agonal entries equal. Looking at(2.8), we see that the same must be true ofu2
2n−2 ∈

Mat2n−1(A(S2n
q )), and so on. Thus, the diagonal relations require that all the diagonal en-

tries of (each)u2
(2j) are equal. If this is true foru2

(2j−2), then the relation foru2
(2j) is that

the same element (the diagonal entry) can be written in two different ways. This element is
simply sj and the two ways of writing it are those given in(2.4).

Finally, u2
(2n) = 1 gives the relationsn = 1.

The off-diagonal relations areq−1u(2j−2)xj = xju(2j−2) andq−1x∗ju(2j−2) = u(2j−2)x
∗
j

for everyj = 1, . . . , n. Because the matrixu(2j−2) is constructed linearly from all the
generatorsxi andx∗i for i < j, these conditions are equivalent to the commutation relations
(2.5a).

In summary, we see that the defining relations are all obtained from the unipotency
condition,u2

(2n) = 1.
This presentation of the relations by the unipotency ofu(2n) is the easiest way to see that

there is an isomorphismA(S2n
1/q)

∼= A(S2n
q ). The substitutionsq ↔ q−1, x0 → (−q)nx0,

andxi → (−q)n−ix∗i are equivalent to conjugatingu(2n) by the antidiagonal matrix


1

1

1

1




and the result is unipotent and self-adjoint if and only ifu(2n) is; thus there is an isomorphism,
A(S2n

1/q)
∼= A(S2n

q ). Because of this, we can assume that|q| > 1 without loss of generality.

Now consider the odd spheresS2n−1
q for any integern > 0. We can construct a unipotent

u(2n−1) ∈ Mat2n [A(S2n−1
q )], simply by settingx0 = 0 in u(2n). Once again, the unipotency

condition,u2
(2n−1) = 1, is equivalent to the relations defining the algebraA(S2n−1

q ) of

polynomial functions onS2n−1
q . Again, one defines self-adjoint elementssi ∈ A(S2n−1

q )

such thatsi = si−1 + x∗i xi = q−2si−1 + xix
∗
i with now s0 = x2

0 = 0. The commutation
relations are again given by(2.5a) and (2.5b)but now(2.5b)gives in particular that the
generatorx1 is normal:

x1x
∗
1 = x∗1x1 in A(S2n−1

q ). (2.9)

The previous argument also shows thatA(S2n−1
q ) is the quotient ofA(S2n

q ) by the ideal

generated byx0; geometrically, this means thatS2n−1
q is a noncommutative subspace ofS2n

q .
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Because of the isomorphismA(S2n
1/q)

∼= A(S2n
q ), we have another isomorphismA(S2n−1

1/q )

∼= A(S2n−1
q ), and again we can assume that|q| > 1 without any loss of generality.

2.1. Interrelations

Each of the even sphere algebras has an involutive automorphism:

σ : A(S2n
q )→ A(S2n

q ), x0 �→ −x0, xj �→ xj, j 	= 0. (2.10)

Obviously, this corresponds to flipping (reflecting) the classicalS2n across the hyperplane
x0 = 0. The coinvariant algebra ofσ is the quotient ofA(S2n

q ) by the ideal generated byx0,

which, as we have noted, is simplyA(S2n−1
q ). Geometrically this means thatS2n−1

q is the

“equator” ofS2n
q —the subspace fixed by the flip.

As for odd spheres, they have an actionρ : T → Aut[A(S2n)] of the torus groupT,
defined by multiplyingx1 by a phase and leaving the other generators alone:

ρ(λ) : A(S2n+1
q )→ A(S2n+1

q ), x1 �→ λx1, xj �→ xj, j 	= 1. (2.11)

The coinvariant algebra is given by settingx1 = 0. Now, letu′(2n+1) be the matrix obtained
by settingx1 = 0 and relabelingx2 asx1, etc., in the matrixu(2n+1). Then,u′(2n+1) is

equivalent to tensoringu(2n−1) with
(

1 0
0 1

)
:

u′(2n+1) = u(2n−1) ⊗

 1 0

0 1




and the result is unipotent if and only ifu(2n−1) is, i.e. the unipotency ofu′(2n+1) yields all and

only the same relations coming from the unipotency ofu(2n−1). This shows thatA(S2n−1
q )

is the quotient ofA(S2n+1
q ) by the∗-ideal generated byx1 andS2n−1

q is the noncommutative

subspace ofS2n+1
q fixed by theT-action in(2.11).

There is also a way of realizing even spheres as noncommutative subspaces of odd ones.
ConsiderS2n+1

q , setx1 = x∗1 = x0 and relabelx2 asx1, etc.; letu′′(2n+1) be the matrix
obtained fromu(2n+1) with these substitutions. The matrixu′′(2n+1) is the same asu(2n) in
which we substitute

x0 →

 0 x0

x0 0


 , xj →


 xj 0

0 xj


 , j 	= 0.

Then the unipotency ofu′′(2n+1) yields precisely the same relations coming from the unipo-

tency ofu(2n); this shows thatA(S2n
q ) is the quotient ofA(S2n+1

q ) by the∗-ideal generated
by x1− x∗1.

Thus, every sphere contains a smaller sphere of dimension one less; by following this
tower of inclusions to its base, we see that every sphere contains a classicalS1, because the
circle does not deform.
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3. Structure and representations

For each dimensionN, we have a one-parameter family of algebrasA(SN−1
q ) which,

at q = 1, givesA(SN−1
1 ) = A(SN−1), the algebra of polynomial functions on a classical

sphereSN−1. It is possible to identify this one-parameter family of algebras to a fixed vector
space and view the product as varying with the parameter. We can then construct a Poisson
bracket onA(SN−1) from the first derivative of the product at the “classical” parameter
value,q = 1. The standard properties of a Poisson bracket (Leibniz and Jacobi identities)
are simple consequences of associativity. The Poisson bracket is given geometrically by
a Poisson bivectorπ, an antisymmetric contravariant 2-tensor. This in turn determines a
symplectic foliation by the directions in whichπ is nondegenerate.

In general, given such a one-parameter deformation from a commutative manifoldM
into noncommutative algebras, we can construct a Poisson bracket on functions. This Pois-
son algebra,A(M) with the commutative product and the Poisson bracket, describes the
deformation to first order. A deformation is essentially a path through an enormous space of
possible algebras, and the Poisson algebra is just a tangent. Nevertheless, if the deformation
is well behaved the Poisson algebra does indicate where it is heading. Here are some things
that one can expect.

If π vanishes along some subspaceX ⊂M, thenπ induces a trivial Poisson structure on
X, i.e.,X is undeformed to first order. This suggests that it may be undeformed altogether.
If so, thenX will be a classical subspace, i.e., there will be a surjective homomorphism of
the deformed algebra to the (undeformed) algebra of functions onX.

More generally, ifX ⊂M is a submanifold such that the restriction ofπ toX is tangent
to X, then the restriction of functions toX is a Poisson homomorphism,A(M)→ A(X),
i.e., the deformation respectsX to first order. In this case it may be that some deformation
of X is a “noncommutative subspace” of the deformation ofM. Algebraically speaking,
this means that the algebra corresponding toX is a quotient of that corresponding toM.
Equivalently, the subalgebra of functions onM vanishing alongX correspond to an ideal
in the deformation.

Suppose that the symplectic leaves ofM are compact andY is the leaf space. Functions
which are constant along the symplectic leaves can be identified with functions onY . In
this way,A(Y) is the center of the Poisson algebra. That is, iff ∈ A(Y) andg ∈ A(M)

then{f, g} = 0. This suggests that the subalgebraA(Y) ⊂ A(M) will be undeformed and
will be the center of the deformed algebra.

More generally, if the symplectic foliation has a Hausdorff leaf space,Y , thenA(Y) acts
by central multipliers on the Poisson algebra. That is forf andg functions onM andh
a function onY , one has{hf, g} = h{f, g}. This suggests thatA(Y) might be undeformed
and will act by central multipliers on the deformation ofA(M). If so, then the deformed
algebra will be the algebra of sections of a bundle of algebras overY . The fibers will be
deformations of the symplectic leaves.

With these ideas in mind, consider some of the properties of the deformed spheres
SN−1
q .

We have seen that theS2n−1
q noncommutative subspace ofS2n

q corresponds to the equator,

the S2n−1 ⊂ S2n wherex0 = 0 and the Poisson bivector onS2n is degenerate. On the
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remainingS2n \ S2n−1, the Poisson bivector is nondegenerate. So, topologically, we have a
union of two copies of symplecticR2n.

The manifoldR
2n has a unique symplectic structure, modulo isomorphism. This sym-

plectic structure corresponds to an essentially unique deformation. If we complete to a
C∗-algebra, then the deformation ofC0(R

2n) will be the algebra,K, of compact operators
on a countably infinite-dimensional Hilbert space.

Then, the kernel of the quotient mapA(S2n
q )→ A(S2n−1

q ) should be a deformation of the

subalgebra of functions onS2n which vanish at the equator. If we complete toC∗-algebras,
this should give us the direct sum of two copies ofK, one for each hemisphere. Thus we
expect that theC∗-algebraC(S2n

q ) will be an extension:

0→ K⊕K→ C(S2n
q )→ C(S2n−1

q )→ 0. (3.1)

In odd dimensions, the Poisson bivector is necessarily degenerate. However, theS2n−1
q

noncommutative subspace ofS2n+1
q corresponds classically to the Poisson bivector being

more degenerate onS2n−1 ⊂ S2n+1. It is of rank 2nat most points, but of rank 2n−2 (or less)
alongS2n−1. The complementS2n+1 \ S2n−1 has a symplectic foliation by 2n-dimensional
leaves which is invariant under theT action; the simplest possibility is that this corresponds
to the product in the identification:

S2n+1 \ S2n−1 ∼= S1× R
2n.

If we complete toC∗-algebras, then the deformation of this should beC(S1) ⊗ K. The
kernel of the quotient mapA(S2n+1

q ) → A(S2n−1
q ) should be this deformation, so we

expect another extension:

0→ C(S1)⊗K→ C(S2n+1
q )→ C(S2n−1

q )→ 0. (3.2)

These expectations are true. As we have mentioned, the odd-dimensional spheres we are
considering are equivalent to the “unitary” odd quantum spheres of Vaksman and Soibelman
[18]. In [11] Hong and Szymánski obtained theC∗-algebrasC(S2n+1

q ) as Cuntz–Krieger
algebras of suitable graphs. From this construction they derived the extension(3.2). They
also considered even spheres, defined as quotients of odd ones by the ideal generated by
x1 − x∗1. These are thus isomorphic to the even spheres we are considering here. They
also obtained these as Cuntz–Krieger algebras and derived the extension(3.1). However,
as explicitly stated in the introduction to[11], they were unable to realize even spheres as
quantum homogeneous spaces of quantum orthogonal groups, thus also failing to realize
that “unitary” and “orthogonal” odd quantum spheres are the same.

Representations of the odd-dimensional spheres were constructed in[18]. The primitive
spectra of all these spheres were computed in[11], which amounts to a classification of rep-
resentations. The representations for quantum Euclidean spheres have also been constructed
in [10] by thinking of them as quotient algebras of quantum Euclidean planes.

By using the properties we have just discussed, we shall present a clearer derivation of the
representations. Indeed, the structure of the representations can be anticipated from the con-
struction ofSN−1

q via the extensions(3.1) and (3.2)and by remembering that an irreducible
representationψ can be partially characterized by its kernel. Moreover, an irreducible rep-
resentation of aC∗-algebra restricts either to an irreducible or a trivial representation of
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any ideal; and conversely, an irreducible representation of an ideal extends to an irreducible
representation of theC∗-algebra (see, for instance,[8]).

For an even sphereS2n
q , the kernel of an irreducible representationψ will contain one

or both of the copies ofK ⊂ C(S2n
q ). If K⊕ K ⊆ kerψ, thenψ factors throughC(S2n−1

q )

and is given by a representation of that algebra. If one copy ofK is not in kerψ, thenψ
restricts to a representation of thisK. However,K has only one irreducible representation.
SinceK is an ideal inC(S2n

q ), the unique irreducible representation ofK uniquely extends

to a representation ofC(S2n
q ) (with the other copy ofK in its kernel).

Thus, we expect the irreducible representations ofS2n
q (up to isomorphism) to be:

1. all irreducible representations ofS2n−1
q ;

2. a unique representation with kernel the second copy ofK;
3. a unique representation with kernel the first copy ofK.

From the extension(3.1) we expect that the generatorx0 is a self-adjoint element of
K ⊕ K ⊂ C(S2n

q ) and it should have almost discrete, real spectrum: it will therefore be a
convenient tool for decomposing the Hilbert space in a representation.

Similarly, from the construction ofS2n+1
q by the extension(3.2), one can anticipate the

structure of its representations. Firstly, ifC(S1) ⊗ K ⊆ kerψ, thenψ factors through
C(S2n−1

q ) and is really a representation ofS2n−1
q .

Otherwise,ψ restricts to an irreducible representation ofC(S1) ⊗ K. This factorizes as
the tensor product of an irreducible representation ofC(S1) with one ofK. The irreducible
representations ofC(S1) are simply given by the points ofS1, and as we have mentioned,K
has a unique irreducible representation. The representations ofC(S1)⊗K are thus classified
by the points ofS1. These representations extend uniquely from the idealC(S1)⊗K to the
whole algebraC(S2n+1

q ).

Thus, we expect the irreducible representations ofS2n+1
q (up to isomorphism) to be:

1. all irreducible representations ofS2n−1
q ;

2. a family of representations parameterized byS1.

In our construction of the representations, a simple identity regarding the spectra of oper-
ators will be especially useful (see, for instance,[8]). If x is an element of anyC∗-algebra,
then

{0} ∪ Specx∗x = {0} ∪ Specxx∗. (3.3)

3.1. Even sphere representations

To illustrate the general structure we shall start by describing the lowest-dimensional
case, namelyS2

q . This is isomorphic to the so-called equator sphere of Podleś [16]. For this
sphere, the representations were also constructed in[14] in a way close to the one presented
here.

Let us then consider the sphereS2
q .

As we have discussed, we expect thatx0 is a compact operator (in some faithful represen-
tation) and thus has an almost discrete, real spectrum. The relationx0x1 = qx1x0 suggests
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thatx1 andx∗1 shift the eigenvalues ofx0. However, we cannot assume a priori thatx0 has
eigenvalues, let alone that eigenvectors form a complete basis of the Hilbert space. The
relation 1= x2

0 + x∗1x1 = q−2x2
0 + x1x

∗
1 shows thatx2

0 ≤ 1 and thus‖x0‖ ≤ 1. As x0 is
self-adjoint, this shows that Specx0 ⊆ [−1,1]. By (3.3)we have also

{0} ∪ Specx∗1x1={0} ∪ Specx1x
∗
1, {0} ∪ Spec(1− x2

0)={0} ∪ Spec(1− q−2x2
0),

{1} ∪ Specx2
0 = {1} ∪ q−2Specx2

0.

Because we have assumed that|q| ≥ 1, the only subsets of [0,1] that satisfy this condition
are{0} and{0, q−2k|k = 0,1, . . . }.

If x0 	= 0 ∈ C(S2
q) then Specx2

0 is the latter set. We cannot simply assume thatx0 	= 0,
since not every∗-algebra is a subalgebra of aC∗-algebra; however, our explicit representa-
tions will show that that is the case here.

Now letH be a separable Hilbert space and suppose thatψ : A(S2
q) → L(H) is an

irreducible∗-representation.
If ψ(x0) = 0 then 1= ψ(x1)ψ(x1)

∗ = ψ(x1)
∗ψ(x1). Thusψ(x1) is unitary, and by the

assumption of irreducibility, it is a numberλ ∈ C, |λ| = 1. So,H = C and the representation
isψ(1)

λ defined by

ψ
(1)
λ (x0) = 0, ψ

(1)
λ (x1) = λ, λ ∈ S1. (3.4)

Thus we have anS1 worth of representations withx0 in the kernel.
If ψ(x0) 	= 0, then 1∈ Specx2

0; it is an isolated point in the spectrum and therefore an
eigenvalue. For some sign± there exists a unit vector|0〉 ∈ H such thatψ(x0)|0〉 = ±|0〉.
So, fork = 0,1, . . . , ψ(x∗1)

k|0〉 is an eigenvector as well, because

ψ(x0)ψ(x
∗
1)
k|0〉 = q−kψ(x∗

k

1 x0)|0〉 = ±q−kψ(x∗1)k|0〉.
By normalizing, we obtain a sequence of unit eigenvectors, recursively defined by

|k〉 := (1− q−2k)−1/2ψ(x∗1)|k − 1〉.

We have thus two representationsψ(2)
+ andψ(2)

− , and direct computation shows that

ψ
(2)
± (x0)|k〉 = ±q−k|k〉, ψ

(2)
± (x1)|k〉 = (1− q−2k)1/2|k − 1〉,

ψ
(2)
± (x∗1)|k〉 = (1− q−2(k+1))1/2|k + 1〉. (3.5)

The eigenvectors{|k〉|k = 0,1, . . . } are mutually orthogonal because they have distinct
eigenvalues, and by the assumption of irreducibility form a basis forH.

Notice that any power ofψ(2)
± (x0) is a trace class operator, while this is not the case for

the operatorsψ(2)
± (x1) andψ(2)

± (x∗1) nor for any of their powers.
Note also that the representations(3.5)are related by the automorphismσ in (2.10), as

ψ
(2)
± ◦ σ = ψ

(2)
∓ . (3.6)

If we set a value ofq with |q| < 1 in (3.5), the operators would be unbounded. This is
the reason for assuming that|q| > 1. The assumption was used in computing Specx0. Not
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only is ‖x0‖ ≤ 1, but by a similar calculation‖x0‖ ≤ |q|. Which bound is more relevant
obviously depends on whetherq is greater or less than 1.

For |q| < 1 the appropriate formulae for the representations can be obtained from(3.5)
by replacing the indexk with −k − 1. As a consequence, the role ofx1 andx∗1 as lowering
and raising operators is exchanged.

Let us then turn to the general even spheresS2n
q .

The structure of the representations is similar to that forS2
q , but more complicated.

The elementx0 is no longer sufficient to completely decompose the Hilbert space of the
representation and we need to use all the commuting self-adjoint elementssi ∈ A(S2n

q )

defined in(2.4).
Using the formulae for 1= sn = sn−1+ x∗nxn = q−2sn−1+ xnx

∗
n and(3.3)we get

{0} ∪ Specx∗nxn = {0} ∪ Specxnx
∗
n,

{0} ∪ Spec(1− sn−1) = {0} ∪ Spec(1− q−2sn−1),

{1} ∪ Specsn−1 = {1} ∪ q−2 Specsn−1.

Therefore eithersn−1 = 0 ∈ C(S2n
q ) or Specsn−1 = {0, q−2k|k = 0,1, . . . }

Now suppose thatψ : A(S2n
q )→ L(H) is an irreducible∗-representation.

If ψ(x0) = 0, thenψ factors throughA(S2n−1
q ). Thusψ is an irreducible representation

of A(S2n−1
q ); these will be discussed later.

If ψ(x0) 	= 0, thenψ(s0) 	= 0, and by the relations(2.6), all theψ(si)’s are nonzero. So,
Specψ(sn−1) = {0, q−2k|k = 0,1, . . . } and in particular, 1 is an eigenvalue ofψ(sn−1).
Becausesn−1 commutes with all the generators exceptxn andx∗n, these generators preserve
the corresponding eigenspace. The same argument as forsn−1 shows that the restriction of
ψ(sn−2) to this eigenspace has the same spectrum; in particular, 1 is an eigenvalue. There is
a simultaneous eigenspace ofψ(sn−1) andψ(sn−2) with eigenvalue 1 for both. Proceeding
in this way, we find that there is a simultaneous eigenspace with eigenvalue 1 for all the
ψ(si)’s. That is, there must exist a unit vector|0, . . . ,0〉 ∈ H such thatψ(si)|0, . . . ,0〉 =
|0, . . . ,0〉 for all i andψ(x0)|0, . . . ,0〉 = ±|0, . . . ,0〉. We construct more unit vectors by
letting |k0, . . . , kn−1〉 be

ψ(x∗1)
k0, . . . , ψ(x∗n)

kn−1|0, . . . ,0〉

modulo a positive normalizing factor. Using the commutation relations betweensi’s and
x∗j ’s we get that

ψ(si)|k0, . . . , kn−1〉 = q−2(ki+···+kn−1)|k0, . . . , kn−1〉.

In summary,xi lowerski−1, x∗i raiseski−1, andsi measures the sumki + · · · + kn−1.
The correct normalizing factors can be determined from

〈k0, . . . , kn−1|ψ(xix∗i )|k0, . . . , kn−1〉 = 〈k0, . . . , kn−1|ψ(si − si−1)|k0, . . . , kn−1〉
= (1− q−2ki−1)q−2(ki+···+kn−1).
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Thus we get two representationsψ(2n)
± defined by

ψ
(2n)
± (x0)|k0, . . . , kn−1〉 = ±q−(k0+···+kn−1)|k0, . . . , kn−1〉,

ψ
(2n)
± (xi)|k0, . . . , kn−1〉
= (1− q−2ki−1)1/2q−(ki+···+kn−1)|k0, . . . , ki−1− 1, . . . , kn−1〉,

ψ
(2n)
± (x∗i )|k0, . . . , kn−1〉
= (1− q−2(ki−1+1))1/2q−(ki+···+kn−1)|k0, . . . , ki−1+ 1, . . . , kn−1〉 (3.7)

with i = 1, . . . , n. The assumption of irreducibility implies that the collection of vectors
{|k0, . . . , kn−1〉, ki ≥ 0} constitute a complete basis forH.

As before, the two representations(3.7)are related by the automorphismσ, as

ψ
(2n)
± ◦ σ = ψ

(2n)
∓ . (3.8)

Again the formulae(3.7)for the representations are for|q| > 1; and again the representations
for |q| < 1 can be obtained by replacing all indiceski with −ki − 1.

In all the irreducible representations ofA(S2n
q ), the representative ofx0 is compact; in fact

it is trace class. We can deduce from this that theC∗-ideal generated byψ(2n)
± (x0) in C(S2n

q )

is isomorphic toK(H), the ideal of all compact operators onH. By using the continuous
functional calculus, we can apply any functionf ∈ C[−1,1] to x0. If f is supported on
[0,1], thenf(x0) ∈ kerψ(2n)

− . Likewise iff is supported in [−1,0], thenf(x0) ∈ kerψ(2n)
+ .

From this we deduce that theC∗-ideal generated byx0 in C(S2n
q ) isK⊕K. One copy ofK

is kerψ(2n)
+ ; the other is kerψ(2n)

− . This shows that the extension(3.1) is correct.

3.2. Odd sphere representations

Again, to illustrate the general strategy we shall work out in detail the simplest case, that
of the sphereS3

q . This can be identified with the underlying noncommutative space of the
quantum group SUq(2) and as such the representations of the algebra are well known[20].

The generators{xi, x∗i |i = 1,2} of the algebraA(S3
q) satisfy the commutation relations

x1x2 = qx2x1, x∗i xj = qxjx∗i , i 	= j, [x1, x
∗
1] = 0, and [x2, x

∗
2] = (1 − q−2)x1x

∗
1.

Furthermore, there is the sphere relation 1= x∗2x2+ x∗1x1 = x2x
∗
2 + q−2x1x

∗
1.

The normal generatorx1 plays much the same role for the representations ofS3
q thatx0

does for those ofS2
q . The sphere relation shows that‖x1‖ ≤ 1 and

{0} ∪ Specx∗2x2 = {0} ∪ Specx2x
∗
2,

{0} ∪ Spec(1− x∗1x1) = {0} ∪ Spec(1− q−2x1x
∗
1),

{1} ∪ Specx∗1x1 = {1} ∪ q−2Specx∗1x1,

which shows that eitherx1 = 0 or Specx∗1x1 = {0, q−2k|k = 0,1, . . . }.
Letψ : A(S3

q)→ L(H) be an irreducible∗-representation.
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If ψ(x1) = 0 then the relations reduce to 1= ψ(x2)ψ(x2)
∗ = ψ(x2)

∗ψ(x2). Thusψ(x2)

is unitary and by the assumption of irreducibility, it is a scalar,ψ(x2) = λ ∈ C with |λ| = 1.
Thus, as before, we have anS1 of representations of this kind.

If ψ(x1) 	= 0, then 1∈ Specψ(x∗1x1) and is an isolated point in the spectrum. Thus,
there exists a unit vector|0〉 ∈ H such thatψ(x∗1x1)|0〉 = |0〉, and by the assumption of
irreducibility, there is someλ ∈ C with |λ| = 1 such thatψ(x1)|0〉 = λ|0〉. We see then
thatψ(x∗2)

k|0〉 is an eigenvector

ψ(x1)ψ(x
∗
2)k|0〉 = q−kψ(x∗

k

2 x1)|0〉 = λq−kψ(x∗2)
k|0〉.

By normalizing, we get a sequence of unit eigenvectors recursively defined by

|k〉 := (1− q−2k)−1/2ψ(x∗2)|k − 1〉.
A family of representationsψ(3)

λ , λ ∈ S1, is then defined by

ψ
(3)
λ (x1)|k〉 = λq−k|k〉, ψ

(3)
λ (x∗1)|k〉 = λ̄q−k|k〉,

ψ
(3)
λ (x2)|k〉 = (1− q−2k)1/2|k − 1〉, ψ

(3)
λ (x∗2)|k〉 = (1− q−2(k+1))1/2|k + 1〉.

(3.9)

We notice that any power ofψ(3)
λ (x1) orψ(3)

λ (x∗1) is a trace class operator, while this is not

the case for the operatorsψ(3)
λ (x2) andψ(3)

λ (x∗2) nor for any of their powers.
Consider the general odd spheresS2n+1

q and letψ : A(S2n+1
q )→ L(H) be an irreducible

representation.
If ψ(x1) = 0 thenψ factors throughA(S2n−1

q ) and is an irreducible representation of
that algebra.

If ψ(x1) 	= 0 thenψ(s1) 	= 0, ψ(s2) 	= 0, etc. By the same arguments as forS2n
q ,

there must exist a simultaneous eigenspace with eigenvalue 1 for alls1, . . . , sn. By the
assumption of irreducibility, this eigenspace is one-dimensional. Let|0, . . . ,0〉 ∈ H be
a unit vector in this eigenspace. Thensi|0, . . . ,0〉 = |0, . . . ,0〉 for i = 1, . . . , n. The
restriction ofψ(x1) to this subspace is unitary and thus for someλ ∈ C with |λ| = 1,
ψ(x1)|0, . . . ,0〉 = λ|0, . . . ,0〉. We can construct more simultaneous eigenvectors of the
si’s. Define|k1, . . . , kn〉 to be

ψ(x2)
k1, . . . , ψ(xn+1)

kn |0, . . . ,0〉
modulo a positive normalizing constant. Then

ψ(x1)|k1, . . . , kn〉 = λ|k1, . . . , kn〉
and

ψ(si)|k1, . . . , kn〉 = q−2(ki+···+kn)|k1, . . . , kn〉.
Working out the normalization, this gives a family of representationsψ

(2n+1)
λ by

ψ
(2n+1)
λ (x1)|k1, . . . , kn〉 = λq−(k1+···+kn)|k1, . . . , kn〉,

ψ
(2n+1)
λ (x∗1)|k1, . . . , kn〉 = λ̄q−(k1+···+kn)|k1, . . . , kn〉,
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ψ
(2n+1)
λ (xi)|k1, . . . , kn〉 = (1− q−2ki−1)1/2q−(ki+···+kn)|k1, . . . , ki−1− 1, . . . , kn〉,

ψ
(2n+1)
λ (x∗i )|k1, . . . , kn〉
= (1− q−2(ki−1+1))1/2q−(ki+···+kn)|k1, . . . , ki−1+ 1, . . . , kn〉 (3.10)

for i = 2, . . . , n+1. The assumption of irreducibility implies that the vectors{|k1, . . . , kn〉,
ki ≥ 0} form an orthonormal basis ofH.

As for the even case, the formulae(3.10)give bounded operators only for|q| > 1; and
as before, the representations for|q| < 1 can be obtained by replacing all indiceski with
−ki − 1.

Again, as in the even case, we can verify thatψ
(2n+1)
λ (x1) is compact (indeed, trace

class) and that the ideal generated byψ
(2n+1)
λ (x1) in the C∗-algebra completion of the

imageψ(2n+1)
λ (A(S2n+1

q )) is K(H). The representationsψ(2n+1)
λ can be assembled into a

single representation by adjointable operators on a HilbertC(S1)-module. With this we can
verify that the ideal generated byx1 in C(S2n+1

q ) is C(S1) ⊗ K and this fact verifies the
extension(3.2).

Putting together the results for even and odd spheres, we get a complete picture of the
set of irreducible representations of all these spheres.

For the odd spheresS2n+1
q , the set of irreducible representations (or equivalently, the

primitive spectrum ofC(S2n+1
q )) is indexed by the union ofn + 1 copies ofS1. These run

from the representationsψ(2n+1)
λ of S2n+1

q given in (3.10) down to the one-dimensional

representationsψ(1)
λ that factor throughC(S1).

For the even spheresS2n
q , the set of irreducible representations (or equivalently, the

primitive spectrum ofC(S2n
q )) is indexed by the union ofn copies ofS1 and two points.

The isolated points correspond to the two representationsψ
(2n)
± specific toS2n

q and given in

(3.7); the circles correspond to representationsψ
(2m+1)
λ coming from lower odd-dimensional

spheres, down toS1.

4. K-homology and K-theory

We are now ready to study theK-homology andK-theory of the quantum Euclidean
spheresSN−1

q . TheK-homology classes will be given by Fredholm modules using the
representations constructed previously while theK-theory classes will be given by means
of suitable idempotents and unitaries.

In fact, in order to compute the pairing ofK-theory withK-homology, it is more conve-
nient to first compute the Chern characters and then use the pairing between cyclic homology
and cohomology[4]. Thus, together with the generators ofK-theory andK-homology we
shall also construct the associated Chern characters in the cyclic homologyHC∗[A(SN−1

q )]

and cyclic cohomologyHC∗[A(SN−1
q )], respectively.

It is worth recalling theK-theory and homology of the classical spheres.
For an even-dimensional sphereS2n, the groups are

K0(S2n) ∼= Z
2, K1(S2n) = 0, K0(S

2n) ∼= Z
2, K1(S

2n) = 0.
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One generator of theK-theory [1] ∈ K0(S2n) is given by the trivial one-dimensional
bundle. The other generator ofK0(S2n) is the left-handed spinor bundle. OneK-homology
generator [ε] ∈ K0(S

2n) is “trivial” and is the push-forward of the generator ofK0(∗) ∼= Z

by the inclusionι : ∗ ↪→ S2n of a point (any point) into the sphere. The other generator,
[µ] ∈ K0(S

2n), is theK-orientation ofS2n given by its structure as a spin manifold[4].
For an odd-dimensional sphere, the groups are

K0(S2n+1) ∼= Z, K1(S2n+1) ∼= Z, K0(S
2n+1) ∼= Z, K1(S

2n+1) ∼= Z.

The generator [1]∈ K0(S2n+1) is the trivial one-dimensional bundle. The generator of
K1(S2n+1) is a nontrivial unitary matrix-valued function onS2n+1. The generator [ε] ∈
K0(S

2n+1) is again the “trivial” element given by the inclusion of a point. The generator
[µ] ∈ K1(S

2n+1) is theK-orientation ofS2n+1 given by its structure as a spin manifold[4].
There is a natural pairing betweenK-homology andK-theory. If we pair [ε] with a vector

bundle we get the rank of the vector bundle, i.e., the dimension of its fibers. If we pair [µ]
with a vector bundle it gives the “degree” of the bundle, a measure of its nontriviality.
Similarly, pairing with [µ] measures the nontriviality of a unitary.

TheK-theory andK-homology of the quantum Euclidean spheres are isomorphic to that
of the classical spheres, i.e., for anyN andq,K∗[C(SN−1

q )] ∼= K∗(SN−1) andK∗[C(SN−1
q )]

∼= K∗(SN−1).
In the case ofK-theory, this was proven by Hong and Szymański in [11] using their con-

struction of theC∗-algebras as Cuntz–Krieger algebras of graphs. The groupsK0 andK1
were given as the cokernel and the kernel, respectively, of a matrix canonically associated
with the graph. The result forK-homology can be proven using the same techniques[7,17]:
the groupsK0 andK1 are now given as the kernel and the cokernel, respectively, of the
transposed matrix. TheK-theory and theK-homology for the particular case ofS2

q (in fact

for all Podlés spheresS2
qc) was worked out in[14] while forS3 ∼= SUq(2) it was spelled out

in [13].

4.1. K-homology

Because theK-homology of these deformed spheres is isomorphic to theK-homology
of the ordinary spheres, we need to construct two independent generators. First consider the
“trivial” generator ofK0[C(SN−1

q )]. This can be constructed in a manner closely analogous
to the undeformed case.

As we have just described, the trivial generator ofK0(S
N−1) is the image of the generator

of theK-homology of a point by the functorial mapK∗(ι) : K0(∗) → K0(S
N−1), where

ι : ∗ ↪→ SN−1 is the inclusion of a point into the sphere. The quantum Euclidean spheres do
not have as many points, but they do have some. We have seen that the relations among the
various spheres always include a homomorphismA(SN−1

q )→ A(S1). Equivalently, every

SN−1
q has a circleS1 as a classical subspace; thus for everyλ ∈ S1 there is a point, i.e., the

homomorphismψ(1)
λ : C(SN−1

q )→ C.

We can construct an element [ελ] ∈ K0[C(SN−1
q )] by pulling back the generator ofK0(C)

byψ(1)
λ . This construction factors throughK0(S

1). BecauseS1 is path connected, the points
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of S1 all define homotopic (and henceK-homologous) Fredholm modules. Thus there is a
singleK-homology class [ελ] ∈ K0[C(SN−1

q )], independent ofλ ∈ S1.

The canonical generator ofK0(C) is given by the following Fredholm module: the Hilbert
space isC; the grading operator isγ = 1; the representation is the obvious representation
of C onC; the Fredholm operator is 0. If we pull this back toK0[C(SN−1

q )] usingψ(1)
λ , then

the Fredholm moduleελ is given in the same way but withψ(1)
λ for the representation.

Given this construction ofελ, it is straightforward to compute its Chern character ch∗(ελ) ∈
HC∗[A(SN−1

q )]. It is the pull back of the Chern character of the canonical generator of

K0(C). An element of the cyclic cohomologyHC0 is a trace. The degree 0 part of the Chern
character of the canonical generator ofK0(C) is given by the identity mapC → C, which
is trivially a trace. Pulling this back we find ch0(ελ) = ψ

(1)
λ : A(SN−1

q ) → C which is
also a trace because it is a homomorphism to a commutative algebra. These are distinct
elements ofHC0[A(SN−1

q )] for different values ofλ. However, because the Fredholm mod-
ulesελ all lie in the sameK-homology class, their Chern characters are all equivalent in
periodic cyclic cohomology. Indeed, applying the periodicity operator once, the cohomol-
ogy classesS(ψ(1)

λ ) ∈ HC2[A(SN−1
q )] are all the same. For the computation of the pairing

betweenK-theory andK-homology, any trace determining the same periodic cyclic coho-
mology class can be used. The most symmetric choice of trace is given by averagingψ

(1)
λ

overλ ∈ S1 ⊂ C:

τ0(a) :=
∮
S1
ψ
(1)
λ (a)

dλ

2πiλ
.

The result is normalized,τ0(1) = 1, and vanishes on all the generators. The higher degree
parts of ch∗(ελ) depend only on theK-homology class [ελ] and can be constructed fromτ0

by the periodicity operator.

4.1.1. K-homology generators for even spheres
We will now construct an element [µev] ∈ K0[C(S2n

q )] by giving a suitable even Fredholm
moduleµ := (H, F, γ).

Identify the Hilbert spaces for the representationsψ
(2n)
± given in(3.7)by identifying their

bases, and call thisH. The representation for the Fredholm module is

ψ := ψ
(2n)
+ ⊕ ψ

(2n)
−

acting onH⊕H. The grading operator and the Fredholm operator are, respectively:

γ =

 1 0

0 −1


 , F =


 0 1

1 0


 .

It is obvious thatF is odd (since it anticommutes withγ) and Fredholm (since it is invertible).
The remaining property to check is that for anya ∈ A(S2n

q ), the commutator [F,ψ(a)]− is
compact. Indeed:
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[F,ψ(a)]− =

 0 −ψ(2n)

+ (a)+ ψ
(2n)
− (a)

ψ
(2n)
+ (a)− ψ

(2n)
− (a) 0


 .

However,ψ(2n)
+ (a) − ψ

(2n)
− (a) = ψ

(2n)
+ [a − σ(a)] anda − σ(a) is always proportional to

a power ofx0. Thus this is not only compact, but also it is trace class. This also shows
that we have (at least) a 1-summable Fredholm module. This is in contrast to the fact that
the analogous element ofK0(S

2n) for the undeformed sphere is given by a 2n-summable
Fredholm module.

The Chern character[4] ch∗(µev)has a component in degree 0, ch0(µev) ∈ HC0[A(S2n
q )].

The element ch0(µev) is the trace:

τ1(a) := Tr(γψ(a)) = Tr[ψ(2n)
+ (a)− ψ

(2n)
− (a)]. (4.1)

The higher degree parts of ch∗(µev) can be obtained via the periodicity operator.
For the sphereS2

q our Fredholm module coincides with the one constructed in[14].

4.1.2. K-homology generators for odd spheres
The element [µodd] ∈ K1[C(S2n+1

q )] is most easily given by an unbounded Fredholm
module.

Let the representationψ be the direct integral (overλ ∈ S1) of the representationsψ(2n+1)
λ

given in(3.10). The operator is the unbounded operatorD := λ−1(d/dλ).
Referring to(3.10), we see that the representative ofx1 is proportional toλ and as a

consequence:

[D,ψ(x1)]− = ψ(x1), (4.2a)

whereas fori > 1 the representative ofxi does not involveλ and therefore:

[D,ψ(xi)]− = 0, i > 0. (4.2b)

Sincea �→ [D,ψ(a)]− is a derivation, this shows that [D,ψ(a)]− is bounded for any
a ∈ A(S2n+1

q ). Note however that forn > 0 (i.e., except forS1) all eigenvalues ofD have
infinite degeneracy and thereforeD does not have compact resolvent.

This triple can be converted into a bounded Fredholm module by applying a cutoff
function toD. A convenient choice isF = χ(D) where

χ(m) :=



1 : m > 0,

−1 : m ≤ 0.

To be more explicit, use a Fourier series basis for the Hilbert space:

|k0, k1, . . . , kn〉 := λk0|k1, . . . , kn〉,

in which the representation is given by
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ψ(x1)|k0, . . . , kn〉 = q−(k1+···+kn)|k0+ 1, . . . , kn〉,
ψ(x∗1)|k0, . . . , kn〉 = q−(k1+···+kn)|k0− 1, . . . , kn〉,
ψ(xi)|0, . . . , kn〉 = (1− q−2ki−1)1/2q−(ki+···+kn)|k0, . . . , ki−1− 1, . . . , kn〉,
ψ(x∗i )|k0, . . . , kn〉 = (1− q−2(ki−1+1))1/2q−(ki+···+kn)|k0, . . . , ki−1+ 1, . . . , kn〉

for i = 1, . . . , n. The Fredholm operator is then given by

F |k0, . . . , kn〉 = χ(k0)|k0, . . . , kn〉.
The only condition to check is that the commutator [F,ψ(a)]− is compact for anya ∈
C(S2n+1

q ). Sincea �→ [F,ψ(a)]− is a derivation, it is sufficient to check this on generators.
One finds [F,ψ(xi)]− = 0 for i > 1 and

[F,ψ(x1)]−|k0, . . . , kn〉 =



2q−(k1+···+kn)|1, k1, . . . , kn〉 : k0 = 0,

0 : k0 	= 0,
(4.3)

which is indeed compact, and in fact trace class.
Thus, this is a 1-summable Fredholm module. Again this is in contrast to the fact that the

analogous element ofK1(S
2n+1) for the undeformed sphere is given by a(2n+1)-summable

Fredholm module.
Its Chern character[4] begins with ch1/2(µodd) ∈ HC1[A(S2n+1

q )] which is given by the
cyclic 1-cocycleϕ defined by

ϕ(a, b) := 1
2Tr(ψ(a)[F,ψ(b)]−). (4.4)

The higher degree parts of ch∗(µodd) can be obtained via the periodicity operator.
For the sphereS3

q
∼= SUq(2) our Fredholm module coincides with the one constructed in

[13].

4.2. K-theory for even spheres

ForS2n
q we construct two classes in theK-theory groupK0[C(S2n

q )] ∼= Z
2.

The first class is trivial. The element [1]∈ K0[C(S2n
q )] is the equivalence class of 1∈

C(S2n
q )which is of course an idempotent. In order to compute the pairing withK-homology,

we need the degree 0 part of its Chern character, ch0[1], which is represented by the cyclic
cycle 1.

The second, nontrivial, class was presented in[12].1 It is given by an idempotente(2n)
constructed from the unipotent(2.7)as

e(2n) = 1
2(1+ u(2n)). (4.5)

Its degree 0 Chern character, ch0(e(2n)) ∈ HC0[A(S2n
q )], is

ch0(e(2n)) = tr(e(2n)) = 2n−1+ 1
2tr(u(2n)) = 2n−1+ 1

2(q
−1− 1)nx0,

1 Again, for the sphereS2
q the idempotent(4.5)was already presented in[14].
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since the recursive definition(2.7)of the unipotentu(2n) shows that

tr(u(2n)) = (q−1− 1)tr(u(2n−2)) = (q−1− 1)nx0.

Now, we can pair these classes with the twoK-homology elements which we constructed
in Section 4.1. First

〈ελ, [1]〉 := τ0(1) = 1,

which is hardly surprising. Second, the “rank” of the idempotente(2n) is

〈ελ, e(2n)〉 := τ0(ch0e(2n)) = 2n−1.

Also not surprising is the “degree” of [1]:

〈µev, [1]〉 := τ1(1) = Tr[ψ(2n)
+ (1)− ψ

(2n)
− (1)] = Tr(1− 1) = 0.

The more complicated pairing is

〈µev, e(2n)〉 := τ1(ch0e(2n)) = Tr ◦ ψ(2n)
+ ◦ (1− σ)(2n−1+ 1

2[q−1− 1]nx0)

= (q−1− 1)n Tr[ψ(2n)
+ (x0)].

So, we need to compute

Tr[ψ(2n)
+ (x0)] :=

∞∑
k0=0

· · ·
∞∑

kn−1=0

q−(k0+···+kn−1) =
( ∞∑
k=0

q−k
)n
= (1− q−1)−n.

And, in turn, we get

〈µev, e(2n)〉 = (−1)n.

The fact that the matrix of pairings is invertible over the integers proves that the classes

[1], [e(2n)] ∈ K0[C(S2n
q )] ∼= Z

2 and [ελ], [µev] ∈ K0[C(S2n
q )] ∼= Z

2 are generators of these
groups.

Classically, the “degree” of the left-handed spinor bundle is−1. So, theK-homology
class which correctly generalizes the classicalK-orientation class [µ] ∈ K0(S

2n) is actually
(−1)n+1[µev].

4.3. K-theory for odd spheres

Again, define [1]∈ K0[C(S2n+1
q )] as the equivalence class of 1∈ C(S2n+1

q ). The pairing

with our element [ελ] ∈ K0[C(S2n+1
q )] is again

〈ελ, [1]〉 := τ0(1) = 1.

There is no other independent generator inK0[C(S2n+1
q )] ∼= Z.
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Instead,K1[C(S2n+1
q )] ∼= Z is nonzero. So we need to construct a generator there. An

oddK-theory element is an equivalence class of unitary matrices over the algebra. We can
construct an appropriate sequence of unitary matrices recursively, just as we constructed
the unipotents and idempotents.

Let

V(2n+1) =

 xn+1 q−1V(2n−1)

−V ∗(2n−1) x∗n+1


 (4.6)

with V(1) = x1. By using the defining relations(2.5a) and (2.5b)one directly proves that
this is unitary:V(2n+1)V

∗
(2n+1) = V ∗(2n+1)V(2n+1) = 1.

In order to pair ourK-homology element [µodd] ∈ K1[C(S2n+1
q )] with the unitaryV(2n+1),

we need the lower degree part ch1
2
(V(2n+1)) ∈ HC1[A(S2n+1

q )] of its Chern character. It is

given by the cyclic cycle:

ch1/2(V(2n+1)) := 1
2tr(V(2n+1) ⊗ V ∗(2n+1) − V ∗(2n+1) ⊗ V(2n+1))

= 1
2(q

−2− 1)n(x1⊗ x∗1 − x∗1 ⊗ x1). (4.7)

Now, compute the pairing:

〈µodd, V(2n+1)〉 := 〈ϕ, ch1/2(V(2n+1))〉
= −(q−2− 1)nϕ(x∗1, x1) = −1

2(q
−2− 1)nTr(ψ(x∗1)[F,ψ(x1)]−).

We have already computed [F,ψ(x1)]− in Eq. (4.3). From that, we get

ψ(x∗1)[F,ψ(x1)]−|k0, . . . , kn〉 =



2q−2(k1+···+kn)|0, k1, . . . , kn〉 : k0 = 0,

0 : k0 	= 0.

Thus

Tr(ψ(x∗1)[F,ψ(x1)]−) =
∞∑

k1=0

· · ·
∞∑

kn=0

2q−2(k1+···+kn)

= 2

( ∞∑
k=0

q−2k

)n
= 2(1− q−2)−n.

Finally, this gives

〈µodd, V(2n+1)〉 = (−1)n+1.

This proves the classes [V(2n+1)] ∈ K1[C(S2n+1
q )] and [µodd] ∈ K1[C(S2n+1

q )] are nonzero
and that neither may be a multiple of another class. Thus [V(2n+1)] and [µodd] are indeed
generators of these groups.
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5. Final remarks

Recently, in[2], a 3-summable spectral triple was constructed for SUq(2); this has been
thoroughly analyzed in[5] in the context of the noncommutative local index formula of
[6]. Also, a 2-summable spectral triple on SUq(2) was constructed in[3] together with a
spectral triple on the spheresS2

qc of Podlés [16].
It would be interesting to compare our 1-summable Fredholm modules for the

sphereS3
q
∼= SUq(2) and for the equator sphereS2

q
∼= S2

q∞ with these spectral triples.
It seems likely that for the same spheres they determine the sameK-homology
class.

It would also be interesting, although much more challenging, to extend (some of) the
analysis of[5] to all spheres, notably odd ones,S2n+1

q , with a suitable modification of the
unbounded Fredholm modules constructed inSection 4.1.2.
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