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Abstract

The quantum Euclidean spher§§’f1, are (noncommutative) homogeneous spaces of quantum
orthogonal groups, SQN). The *-algebraA(Sg‘"l) of polynomial functions on each of these is
given by generators and relations which can be expressed in terms of a self-adjoint, unipotent matrix.
We explicitly construct complete sets of generators for kiéheory (by nontrivial self-adjoint
idempotents and unitaries) and tkehomology (by nontrivial Fredholm modules) of the spheres
Sg’*l. We also construct the corresponding Chern characters in cyclic homology and cohomology
and compute the pairing &-theory withK-homology. On odd spheres (i.e., fdreven) we exhibit
unbounded Fredholm modules by means of a natural unbounded operafaich, while failing
to have compact resolvent, has bounded commutators with all elements in the aﬂg@gﬁral).
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1. Introduction

There exists a growing literature devoted to the study of examples of “quantum” and
“noncommutative” spaces. In this paper we shall dissect one class of these, the so called
quantum Euclidean spherégfl. They were firstintroduced ii9] as homogeneous spaces
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of quantum orthogonal groups $@V), which areR-matrix deformations of the usual
orthogonal groups S@’).

We shall regard the sphercé)’§"1 as “noncommutative real affine varieties”. For such
an object X, the algebraA (X) is a finitely presented-algebra. In contrast with classical
algebraic geometry, there does not in general exist a topological poikit d&tvertheless,
we regardX as a noncommutative space at@X) as the algebra of polynomial functions
onX.

In the classical case, one can consider the algebra of continuous functions on the under-
lying topological space of an affine variety.Xfis bounded, then this is@*-algebra and
is the completion ofA(X). In general, one defingy X) to be theC*-algebraic comple-
tion of thex-algebraA (X). To construct this, one considers all possileepresentations
of A(X) on a countably infinite-dimensional Hilbert space. Then the normi QX) is
defined as the supremum of the norms in all these representations and-tigebra
C(X) is the completion ofA (X) with respect to this norm. Th€*-algebraC(X) has the
universal property that any-homomorphism fromA(X) to a separabl€*-algebra fac-
tors throughC(X). In particular, any«-representation ofi(X) extends to a representation
of C(X).

For the noncommutative spaces at hand, the algsbfg’*l) was described ifiL2] by
means of a suitable self-adjoint idempotent (a matrix of functions whose square is itself). In
the present paper we improve on this by giving a clearer and nicer presentazﬁi(m[’,%fl)
in terms of a self-adjoint unipotent (a matrix of functions whose square is the identity)
which is defined recursively. We then exhibit all representations of the algmj;érl)

which in turn extend to thé‘*-algebraC(Sfl\’—l).

The core of the paper is the study of generators ofkiHeomology andk-theory of the
spheresSf]V—l. The K-theory classes will be given by means of self-adjoint idempotents
(naturally associated with the aforementioned unipotents) and of unitaries in algebras of
matrices overd (S¥~1). The K-homology classes will be given as (homotopy classes of)
suitable 1-summable Fredholm modules.

For odd spheres (i.e., fa¥ even) the oddk-homology generators are first given in
terms of unbounded Fredholm modules. These are given by means of a natural unbounded
operatorD which, while failing to have compact resolvent, has bounded commutators with
all elements in the algebra(s2* ).

On the way to computing the pairing &f-theory with K-homology, we will exhibit the
Chern characters of the generators of fi¢heory andK-homology, as elements in the
cyclic homologyl—|C*[A(S$’—1)] and cyclic cohomologyhlc*[A(SéV‘l)], respectively.

Needless to say, the pairing is integral (it comes from a noncommutative index theorem).
Furthermore, the nonvanishing of the pairing will testify to the nontriviality of the elements
that we construct in botiK-homology andk-theory.

2. Quantum Euclidean spheres

As we have already mentioned, the quantum Euclidean spr@‘eé, were introduced
in [9] as quantum homogeneous spaces of the quantum orthogonal groyps)) Stbe
latter beingR-matrix deformations of usual orthogonal groups SO(N).
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We shall briefly recall that constructigh,12,15] Let us start with the quantum Euclidean
spaceRfI". The *-algebraA(R(’IV) of its polynomial “functions” is generated by elements
{Xo =X, xi, x},i=1,...,n}for N = 2n+ 1 while for N = 2n there is noo (the reason
for the notationkg will be clear shortly). These generators fulfill commutation relations:

xixj=0Xx;, 0<i<j<n, Xixj=oxxf, i#J, (2.1a)
1— -2
——7 r.2_1 i>1,
1 + q_zloi—l 4
[-xi, X;k] = 0 i= 1’ N = 2]1, (Zlb)
(1-qHx3 i=LN=2n+1
with p; = (1/2) —iorp;, =1—i,i =1,...,n, according to whetheN is odd or even,
respectively. The eIemen;t,%, i=1,...,n,aregiven by
r2 = g 2P (x')* 4 g 2Py Yy g () (2.2)

and one can prove that = r2 is central.

In the classical{ = 1) case, theselz’s are simply sums of squares of coordinates and
fixing the value of-? corresponds to the definition of a sphere as the set of points at a fixed
distance from the origin.

In our case, by fixing the value of we get the quantum Euclidean sphé;;\é—l of the

corresponding “radius”. Thus, the quantum Euclidean spﬂgré is naturally considered
as a quantum subspace of the quantum Euclidean ﬂb{}imd the aIgebraA(S,’]\'*l) of
polynomial functions on it is a quotient of the algebréi%f)’) by the ideal generated by the
relation that fixes the radius. Furthermore, the natural coaction gf8n RQ’:

§: ARY) - A(SQ,(N) ® A(R}) (2.3)

preserves the radiug, §(r?) = 1 ® r2, and yields a coaction of SQV) on S}I"‘l.
We can simplify the relation&.1a) and (2.1bpy rescaling one generatof := (1 +
g HY2%0. Itis also simpler to use rescaled “partial radii” which are related todtseby

r?=(1+q %)s;

and are given recursively by

Sii=Ssic1+ XX = g si_1+ xix}, 50 1= x(z). (2.4)
By using these new elemen{swe can write the commutation relations of the generators
{xo=x}, x;,xf,i=1... n}ofthe aIgebraA(RéV) as

xixj=0Xx;, 0<i<j<n, x?xj = C]ij;k, i#j, (2.5a)

i, 1= (1 — g Psi-1 (2.5b)

with the understanding thap = 0 if N = 2n. We see that the equality of the two formulae
for s; in (2.4)is equivalent to the commutation relati¢h5b)
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Given N, the aIgebrasA(Sj]"*l) for quantum spheres of different radii are isomorphic.
We are thus free to normalize the radius to the most convenient choice. Tshis=isl
or equivalentlyr? = 14 ¢®*~1 or r? = 1+ ¢?*~2 according to whetheN is odd (even
spheres) oWV is even (odd spheres).

The elements; A(qu”) are self-adjoint and related as

O<so<---<sp1=<s, =1 (26)

From the commutation relatiorf2.5a)it follows for i < j thatxfx;x; = qzxj'x;kx,'; on the
other handcjxjxi = xixjx,-. With a little induction, we deduce that

qzxjs,- N A q_z
SiXj = SixX; =
XjSi >, x*s; P>

xjfsi i<,

and that the;’s are mutually commuting.

Looking at relationg2.5a) and (2.5h)we see that odd quantum Euclidean sphﬁgésl
are the same as the odd quantum spheres introdud&8]i(see als¢19]) as noncommu-
tative homogeneous spaces of quantum unitary groupsSu

To our knowledge this simple fact, which was observed during a conversation with
Bonechi and Dabrowski, has not been presented before. It extends the classical result that
odd-dimensional spheres are simultaneously homogeneous spaces of orthogonal and of
unitary groups.

The presentation of the algebﬁzﬁR;" ) in [9] involved the square root of the deformation
parametey; this must therefore be positive in that construction. In our presentation no
square roots are involved and we may take any valug efR; however, we shall soon
see that we may restrict the valuesjofithout loss of generality, due to the occurrence of
natural isomorphisms.

In [12] it was shown that the defining relations of the algeb(zsé"*l) of polynomial
functions onsY—1 are equivalent to the condition that a certain matrix cm{efé\’—l) be
idempotent. This is also equivalent to the condition that another matrix be unipotent, as we
shall explain presently.

First consider the even sphetﬁﬁ foranyintegen > 0. The aIgebraA(S(f”) is generated
by elementgxg, x;, x},i =1,... ,n}.

We recursively define self-adjoint matriceg,) € Maty: (C(xo, x;, xf,i = 1,... ,n))
for all n by
e T
U@n) = (2.7)
X, —U(2n-2)

with u ) = xo. The*-algebraA(S(f”) is then defined by the relations thas,) is unipotent,
u%zn) = 1, and self-adjointy(,,) = u(2. Thatis, itis the quotient of the freealgebra on
2n + 1 generators by these relations.

The self-adjointness relations merely give thais the adjoint ofy; andxg is self-adjoint.
Unipotency gives a matrix of2 relations, although many of these are vacuous or redundant.
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These can be deduced inductively fr¢2a7) which gives

2 ‘1_2“(22;1—2) + xnxy ‘1_1“(2n72)xn — XnU(2n—2) 2.8)
u = .
(2n) _
q leM(Zn—z) — U@n-2)X;, ufz,,,z) + X5 X

The condition thaufzm = 1 means in particular thal?zm is diagonal with all the di-
agonal entries equal. Looking é2.8), we see that the same must be trueué)‘_2 €
Matznfl(A(S(f”)), and so on. Thus, the diagonal relations require that all the diagonal en-
tries of (each).%, are equal. If this is true foa?,; , , then the relation for,  is that
the same element (the diagonal entry) can be written in two different ways. This element is
simply s; and the two ways of writing it are those given(4).

Finally, u?, = 1 gives the relatios, = 1.

H H 1 -1
The off-diagonal relations akg ~u2;_2)x; = xju2j—2) andg xju(zj_z) = u(zj_g)xj

for everyj = 1,...,n. Because the matrix;_p) is constructed linearly from all the
generators; andx} fori < j, these conditions are equivalent to the commutation relations
(2.5a)

In summary, we see that the defining relations are all obtained from the unipotency
condition,u?, = 1.

This presentation of the relations by the unipotency gfy is the easiest way to see that
there is an isomorphism(Sf7q) x~ A(Sj”). The substitutiong <> ¢~ 1, xo0 — (—¢)"xo,
andx; — (—q)"*"x;" are equivalent to conjugatingsy,, by the antidiagonal matrix

1

1

and the resultis unipotent and self-adjoint if and only ) is; thus there is anisomorphism,
A(Sf7q) =~ A(Sg"). Because of this, we can assume tlgat- 1 without loss of generality.

Now consider the odd spherﬂ%‘“1 for any integen > 0. We can construct a unipotent
U@n-1) € Matgn[A(Sg"‘l)], simply by settingxg = 0 in u(2,). Once again, the unipotency
condition,uénfl) = 1, is equivalent to the relations defining the algehr@g”‘l) of
polynomial functions ors2"~*. Again, one defines self-adjoint elemestse A(S7"~1)
such thats; = s;_1 + x7x; = g %51+ x;xF with now sg = x% = 0. The commutation
relations are again given i.5a) and (2.5bbut now (2.5b) gives in particular that the
generaton is hormal:

x1x] = xjx1 in A(Sg"_l). (2.9)

The previous argument also shows tlma(ﬂg"*l) is the quotient ofA(Sg") by the ideal
generated byo; geometrically, this means th&j-"—l is a noncommutative subspaceﬁjf.
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Because of the isomorphisﬂ(sf’;q) ~ A(Sg"), we have another isomorphismsf;fq‘l)
= A(S?*l), and again we can assume thgt> 1 without any loss of generality.

2.1. Interrelations

Each of the even sphere algebras has an involutive automorphism:
o AT > AS?),  xo> —x0,  xj>xj, j#O. (2.10)

Obviously, this corresponds to flipping (reflecting) the class§lacross the hyperplane
xo = 0. The coinvariant algebra ofis the quotient of4(S§") by the ideal generated by,

which, as we have noted, is simply(Sg”*l). Geometrically this means thﬁ)}”*l is the
“equator” ofS{f”—the subspace fixed by the flip.

As for odd spheres, they have an action T — Aut[A(52")] of the torus grougT,
defined by multiplyinge1 by a phase and leaving the other generators alone:

p()  ASIH) — A(STH, X1 > AXq, xjx, j#L (2.11)
The coinvariant algebra is given by setting= 0. Now, Ietu/(2n+1) be the matrix obtained
by settingx; = 0 and relabelinge, asxy, etc., in the matrix: 2,11). Then,u/(2n+l) is

equivalent to tensoring,—1) with (é 2)

10

U(gpi1) = U@n-1) @ 1

and the resultis unipotent if and onlyiifz, 1) is, i.e. the unipotency of’(2n+l) yields all and
only the same relations coming from the unipotency @f—1,. This shows thals\(S,f”‘l)
is the quotient ofd (52" 1) by thex-ideal generated hys ands2"~* is the noncommutative
subspace o§2'** fixed by theT-action in(2.11)

There is also a way of realizing even spheres as nhoncommutative subspaces of odd ones.
Considersg"“, setx; = xj = xo and relabek; asx, etc; letu(,, ., be the matrix
obtained fromu z,+1) with these substitutions. The matuix,, , ; is the same a8z, in
which we substitute

0 «xo x;j O
xXp —> ) xXj— , Jj#O.
xg O 0 x;

Then the unipotency of(zﬁl) yields precisely the same relations coming from the unipo-

tency ofu 2,); this shows thatt (S2") is the quotient ofA (2" 1) by thex-ideal generated
by x1 — x7.

Thus, every sphere contains a smaller sphere of dimension one less; by following this
tower of inclusions to its base, we see that every sphere contains a cladstatause the
circle does not deform.
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3. Structure and representations

For each dimensioV, we have a one-parameter family of algebm(§,’1"—1) which,

atg = 1, givesA(Sf"l) = A(SN-1), the algebra of polynomial functions on a classical
spheresV—1, Itis possible to identify this one-parameter family of algebras to a fixed vector
space and view the product as varying with the parameter. We can then construct a Poisson
bracket onA(S¥—1) from the first derivative of the product at the “classical” parameter
value,q = 1. The standard properties of a Poisson bracket (Leibniz and Jacobi identities)
are simple consequences of associativity. The Poisson bracket is given geometrically by
a Poisson bivectorr, an antisymmetric contravariant 2-tensor. This in turn determines a
symplectic foliation by the directions in whichis nondegenerate.

In general, given such a one-parameter deformation from a commutative mahifold
into noncommutative algebras, we can construct a Poisson bracket on functions. This Pois-
son algebraA (M) with the commutative product and the Poisson bracket, describes the
deformation to first order. A deformation is essentially a path through an enormous space of
possible algebras, and the Poisson algebra is just a tangent. Nevertheless, if the deformation
is well behaved the Poisson algebra does indicate where it is heading. Here are some things
that one can expect.

If 7 vanishes along some subspace M, thenx induces a trivial Poisson structure on
X, i.e., X is undeformed to first order. This suggests that it may be undeformed altogether.
If so, thenX will be a classical subspace, i.e., there will be a surjective homomorphism of
the deformed algebra to the (undeformed) algebra of functiors.on

More generally, ifX ¢ M is a submanifold such that the restrictionmofo X is tangent
to X, then the restriction of functions t® is a Poisson homomorphism(M) — A(X),
i.e., the deformation respecisto first order. In this case it may be that some deformation
of X is a “noncommutative subspace” of the deformation\af Algebraically speaking,
this means that the algebra corresponding tis a quotient of that corresponding fel.
Equivalently, the subalgebra of functions &1 vanishing alongX correspond to an ideal
in the deformation.

Suppose that the symplectic leaves\dfare compact and is the leaf space. Functions
which are constant along the symplectic leaves can be identified with functiorslan
this way, A(Y) is the center of the Poisson algebra. That isf i€ A(Y) andg € A(M)
then{f, g} = 0. This suggests that the subalgelr@) c A(M) will be undeformed and
will be the center of the deformed algebra.

More generally, if the symplectic foliation has a Hausdorff leaf spécéhenA(Y) acts
by central multipliers on the Poisson algebra. That is fandg functions onM andh
a function onY, one hadhf, g} = h{f, g}. This suggests that (Y) might be undeformed
and will act by central multipliers on the deformation 4f{M). If so, then the deformed
algebra will be the algebra of sections of a bundle of algebras lovéhe fibers will be
deformations of the symplectic leaves.

With these ideas in mind, consider some of the properties of the deformed spheres
Syt

We have seen that tlﬁ”*l noncommutative subspacexji?” corresponds to the equator,
the $2~1 ¢ $2" wherexp = 0 and the Poisson bivector & is degenerate. On the
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remainings?* \ §2*~1, the Poisson bivector is nondegenerate. So, topologically, we have a
union of two copies of symplectig?”.

The manifoldR?" has a unique symplectic structure, modulo isomorphism. This sym-
plectic structure corresponds to an essentially unique deformation. If we complete to a
C*-algebra, then the deformation 6§(R%*) will be the algebraiC, of compact operators
on a countably infinite-dimensional Hilbert space.

Then, the kernel of the quotient malﬁSzf") — A(Sg"*l) should be a deformation of the
subalgebra of functions a$?” which vanish at the equator. If we completeitb-algebras,
this should give us the direct sum of two copies@fone for each hemisphere. Thus we
expect that tha‘:*—algebraC(Sﬁ”) will be an extension:

0> KoK — (S — sz —o. (3.1)

In odd dimensions, the Poisson bivector is necessarily degenerate. Howev&lff’TFHe
noncommutative subspace .@j"*l corresponds classically to the Poisson bivector being

more degenerate ¢it" 1 ¢ §2'*1, Itis of rank 2 at most points, but of ranki2-2 (or less)
alongs?'~1. The complemens?*+1\ §2"~1 has a symplectic foliation by:2dimensional
leaves which is invariant under tfigaction; the simplest possibility is that this corresponds
to the product in the identification:

SZn+l \ S2n71 >~ Sl % RZ}’I

If we complete toC*-algebras, then the deformation of this shouldd§') ® K. The
kernel of the quotient mapx(Sg”“) — A(Sg"—l) should be this deformation, so we
expect another extension:

0 CSH®K — C(s2h — (s 1 — 0. (3.2)

These expectations are true. As we have mentioned, the odd-dimensional spheres we are
considering are equivalent to the “unitary” odd quantum spheres of Vaksman and Soibelman
[18]. In [11] Hong and Szymiaski obtained theC*-algebrasC(52'™1) as Cuntz—Krieger
algebras of suitable graphs. From this construction they derived the extéBstprThey

also considered even spheres, defined as quotients of odd ones by the ideal generated by
x1 — x]. These are thus isomorphic to the even spheres we are considering here. They
also obtained these as Cuntz—Krieger algebras and derived the exté€h&johiowever,

as explicitly stated in the introduction 1], they were unable to realize even spheres as
gquantum homogeneous spaces of quantum orthogonal groups, thus also failing to realize
that “unitary” and “orthogonal” odd quantum spheres are the same.

Representations of the odd-dimensional spheres were constru¢id.imhe primitive
spectra of all these spheres were computétlify which amounts to a classification of rep-
resentations. The representations for quantum Euclidean spheres have also been constructed
in [10] by thinking of them as quotient algebras of quantum Euclidean planes.

By using the properties we have just discussed, we shall present a clearer derivation of the
representations. Indeed, the structure of the representations can be anticipated from the con-
struction ofSéV—1 via the extension€3.1) and (3.2and by remembering that an irreducible
representation can be partially characterized by its kernel. Moreover, an irreducible rep-
resentation of a*-algebra restricts either to an irreducible or a trivial representation of
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any ideal; and conversely, an irreducible representation of an ideal extends to an irreducible
representation of th€*-algebra (see, for instand@)).

For an even spherg?, the kernel of an irreducible representatiprwill contain one
or both of the copies ok C C(Sgn). If & K C kery, theny factors throughf(Sg”*l)
and is given by a representation of that algebra. If one copg ©f not in kery, thenyr
restricts to a representation of this However,K has only one irreducible representation.
Since is an ideal irC(Sg”), the unique irreducible representationtotiniquely extends

to a representation aﬁ(SqZ”) (with the other copy oK in its kernel).
Thus, we expect the irreducible representationsgfbf(up to isomorphism) to be:

1. allirreducible representations §f*~;
2. aunique representation with kernel the second cogg; of
3. aunique representation with kernel the first copyCof

From the extensiof3.1) we expect that the generatog is a self-adjoint element of
KoK C C(Sg") and it should have almost discrete, real spectrum: it will therefore be a
convenient tool for decomposing the Hilbert space in a representation.

Similarly, from the construction Qf§"+1 by the extensiornf3.2), one can anticipate the
structure of its representations. Firstly,dfs}) ® K < kery, theny factors through
C(s2"~1) and is really a representation &f .

Otherwise,y restricts to an irreducible representationCos?) ® K. This factorizes as
the tensor product of an irreducible representatiofi(6t) with one ofC. The irreducible
representations @f(S?) are simply given by the points 6, and as we have mentioned,
has a unique irreducible representation. The representatiGiis§ Hf® K are thus classified
by the points ofs1. These representations extend uniquely from the ide#ll) ® K to the
whole algebra’(s2'*1).

Thus, we expect the irreducible representations(ft“!n*l (up to isomorphism) to be:

1. allirreducible representations §f*~*;
2. afamily of representations parameterizedsby

In our construction of the representations, a simple identity regarding the spectra of oper-
ators will be especially useful (see, for instani@). If x is an element of ang*-algebra,
then

{0} U Specx™x = {0} U Specxx*. (3.3)
3.1. Even sphere representations

To illustrate the general structure we shall start by describing the lowest-dimensional
case, namely“,f. This is isomorphic to the so-called equator sphere of Bqjdl&. For this
sphere, the representations were also construc{édjin a way close to the one presented
here.

Let us then consider the sphe?%

As we have discussed, we expect thgis a compact operator (in some faithful represen-
tation) and thus has an almost discrete, real spectrum. The relgipr= gxxg suggests
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thatx; andxj shift the eigenvalues ofy. However, we cannot assume a priori thahas
eigenvalues, Iet alone that eigenvectors form a complete basis of the Hilbert space. The
relation 1= x3 + xjx1 = ¢~2x3 + x1x} shows that3 < 1 and thus|xo| < 1. Asxo is

self-adjoint, this shows that Speg C [—1, 1]. By (3.3)we have also

{0} U Specx}x1={0} U Specx1x?, {0} U Speql — x3)={0} U Specl — ¢ 2x3),
{1} U Specx3 = {1} U g~2Specx3.

Because we have assumed tlgat> 1, the only subsets of [d] that satisfy this condition
are{0} and{0, g %k =0,1,...}.

If xo#20¢ C(Sj) then Spea% is the latter set. We cannot simply assume tha# 0,
since not every-algebra is a subalgebra of&-algebra; however, our explicit representa-
tions will show that that is the case here.

Now let H be a separable Hilbert space and supposex,trhatA(qu) — L(H) is an
irreduciblex-representation.

If ¥(x0) = 0then 1= y¥(x1)¥(x1)* = ¥(x1)*Y¥(x1). Thusy(xy) is unitary, and by the
assumption ofirreducibility, itisanumbgre C, 1| = 1. So,H = C and the representation
is v defined by

v P =0 yPan=xr rest (3.4)

Thus we have as! worth of representations withy in the kernel.

If ¥ (xp) # 0, then 1e SperS; it is an isolated point in the spectrum and therefore an
eigenvalue. For some sighthere exists a unit vectdd) € # such that/(xp)|0) = +|0).
So, fork=0,1,..., w(xj)k|0) is an eigenvector as well, because

PP HH0) = ¢ * Y x0)10) = 24~ F Y (0).
By normalizing, we obtain a sequence of unit eigenvectors, recursively defined by
k) := (L — g~ ) Y2k — 1).

We have thus two representatloyzg) andw(z) and direct computation shows that

Y2 xo)lk) =+ ¥ k), PP @lk) =1 - g Yk - 1),
Y2 Ik = (1— g 2D Y2 4 1y, (3.5)

The eigenvector$|k)|k = 0,1, ...} are mutually orthogonal because they have distinct
eigenvalues, and by the assumption of irreducibility form a basigtfor

Notice that any power o&i)(xo) is a trace class operator, while this is not the case for

the operatorsﬂf (xl) andw(z) (x7) nor for any of their powers.
Note also that the representatid3ss) are related by the automorphisgmin (2.10) as

yP oo =y?. (3.6)

If we set a value ofy with |g| < 1 in (3.5), the operators would be unbounded. This is
the reason for assuming that > 1. The assumption was used in computing Spe&ot
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only is ||xg|| < 1, but by a similar calculatiofixg|| < |¢|. Which bound is more relevant
obviously depends on whethgis greater or less than 1.

For |q| < 1 the appropriate formulae for the representations can be obtained3rbjm
by replacing the indek with —k — 1. As a consequence, the rolexgfandxj as lowering
and raising operators is exchanged.

Let us then turn to the general even sphess

The structure of the representations is similar to thatStrbut more complicated.
The elementyq is no longer sufficient to completely decompose the Hilbert space of the
representation and we need to use all the commuting self-adjoint elemesats(Sg”)
defined in(2.4).

Using the formulae for s, = s,—1 + x}x, = g 2sp_1+ x,x; and(3.3)we get

{0} U Specx} x, = {0} U Specx,x}:,
{0} U Spe€l — s,-1) = {0} U Specl — ¢ 2s,-1).
{1} U Specs,—1 = {1} U g2 Specs,_1.

Therefore either, 1 = 0 € C(5?") or Spew,,—1 = {0, %[k =0,1,...}
Now suppose that : A(Sg") — L(H) is an irreduciblex-representation.
If y(x0) = O, theny, factors throughd (S2*~1). Thusy is an irreducible representation

of A(Sﬁ"*l); these will be discussed later.

If ¥(x0) # 0, theny(sg) # 0, and by the relationg.6), all they(s;)’s are nonzero. So,
Specy(s,—1) = {0,¢ %]k = 0,1, ...} and in particular, 1 is an eigenvalue ¥fs,_1).
Because, 1 commutes with all the generators excepandx’, these generators preserve
the corresponding eigenspace. The same argument gs foshows that the restriction of
Y(s,—2) to this eigenspace has the same spectrum; in particular, 1 is an eigenvalue. There is
a simultaneous eigenspaceyafs, 1) andy(s,_2) with eigenvalue 1 for both. Proceeding
in this way, we find that there is a simultaneous eigenspace with eigenvalue 1 for all the
¥(s;)'s. That is, there must exist a unit vectfr . .. , 0) € H such thaty(s;)|0, ... ,0) =
|0, ..., 0) forall i andy(xp)|0, ... ,0) = £|0, ..., 0). We construct more unit vectors by
letting |ko, ... , k,—1) be

YDk, L ye110, ..., 0)

modulo a positive normalizing factor. Using the commutation relations betwéseand
x’]’f’s we get that

(slko, . .. s ky_1) = g 20t TRV g k).

In summaryy; lowersk;_1, x; raisesk; 1, ands; measures the suk + - - - + k1.
The correct normalizing factors can be determined from

(ko, ... kn—alY(xix)lko, ...  kn—1) = (ko, ..., kn—1l¥(si — si—D) ko, ... , kn—1)
=(1- q*Zki—l)q*Z(ki+"'+kn—l)'
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Thus we get two representatiomg”) defined by

2n _

U (x0) ko, - . . k1) = g~ Rt Vg k),
2n

& (i) ko, - . k1)

= (11— g &yl2g-thitth-D ko ki — 1, kee1),

Y& ko, ..., kn1)
= (L— g 2ttt tigg 41 k) (3.7)
withi = 1,...,n. The assumption of irreducibility implies that the collection of vectors
{lko, ... , kn—1), k; > O} constitute a complete basis faf.

As before, the two representatiof7) are related by the automorphismas
Y& oo =y, (3.8)

Againthe formulaé3.7)for the representations are fgi > 1; and againthe representations
for |¢g| < 1 can be obtained by replacing all indidesvith —k; — 1.

Inallthe irreducible representationsMS(f”), the representative af is compact; in fact
itis trace class. We can deduce from this that@fedeal generated byrf") (x0)in C(Sg")
is isomorphic talC(H), the ideal of all compact operators @h By using the continuous
functional calculus, we can apply any functigne C[—1, 1] to xo. If f is supported on
[0, 1], then f(xo) € kery' @, Likewise if f is supported inf-1, 0], then f(xo) € kery 2.

+
From this we deduce that th#&-ideal generated hyp in C(Sgn) is £ @ K. One copy ofC

is kerwf’”; the other is kew(_z”). This shows that the extensi@B.1)is correct.

3.2. Odd sphere representations

Again, to illustrate the general strategy we shall work out in detail the simplest case, that
of the spheresg. This can be identified with the underlying noncommutative space of the
quantum group SK{2) and as such the representations of the algebra are well kia@kn

The generatoréy;, x7|i = 1, 2} of the algebraA(Sj) satisfy the commutation relations
xX1x2 = OXox1, Xjx; = OX;x5, i # j, [x1,x7] = 0, and f2,x5] = (1 — q‘z)xlxi.
Furthermore, there is the sphere relatioa k3x + xjx1 = xox3 + q_lexj.

The normal generator; plays much the same role for the representationﬁahatxo
does for those O.S'g. The sphere relation shows that; || < 1 and

{0} U Specysxz = {0} U Specroxs,
{0} U Specl — xjx1) = {0} U Specl — g 2x1x}),
{1} U Specxix1 = {1} U g~ 2Specxix,

which shows that either; = 0 or Speaix; = {0,¢ %[k =0,1,...}.
Lety : A(S;;’) — L(H) be an irreducible--representation.
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If ¥(x1) = Othen the relations reduce to ¥ (x2) ¥ (x2)* = ¥(x2)*¥(x2). Thusy(x2)
is unitary and by the assumption of irreducibility, itis a scaldr2) = L € Cwith |A| = 1.
Thus, as before, we have &h of representations of this kind.

If ¥(x1) # O, then 1€ Specy(x7x1) and is an isolated point in the spectrum. Thus,
there exists a unit vectdd) € H such thaty(x7x1)|0) = |0), and by the assumption of
irreducibility, there is some € C with |A| = 1 such that/(x1)|0) = 1|0). We see then
thatl/f(x;)km) is an eigenvector

Y)Y OB)KIO) = g~ 9(xh x1)[0) = Ag Ky (0).
By normalizing, we get a sequence of unit eigenvectors recursively defined by
k) i= (L= g~ )"y (x3)lk — 1).

A family of representationsrf), A € S1, is then defined by

vl = rqf ), P 6Dk = g k),
Dk = A-g k-1, vP eIk = Q- g )Yk + 1),
(3.9)

We notice that any power qﬁf’) (x1) or 1/f§3) (x]) is a trace class operator, while this is not

the case for the operatoqlfcf) (x2) andwf) (x3) nor for any of their powers.

Consider the general odd sphesgs™ and lety : A(S7"+1) — L(#) be anirreducible
representation.

If ¥(x1) = 0 theny factors throughA(Sg”*l) and is an irreducible representation of
that algebra.

If ¥(x1) # 0 theny(s1) # O, ¥(s2) # O, etc. By the same arguments as ﬂgf‘
there must exist a simultaneous eigenspace with eigenvalue 1 far, all , s,,. By the
assumption of irreducibility, this eigenspace is one-dimensional|Q.et. ,0) € H be
a unit vector in this eigenspace. Thei0,...,0) = |0,...,0) fori = 1,...,n. The
restriction ofy(x1) to this subspace is unitary and thus for some C with |A| = 1,
¥(x1)|0,...,0) = A0, ..., 0). We can construct more simultaneous eigenvectors of the
si's. Definelkq, ... , k;,) to be

Yk, L Y010, ..., 0)

modulo a positive normalizing constant. Then
v(x)lk1, ..., kn) = Alka, ... ky)
and
sk, ... k) = g 2RO k).
Working out the normalization, this gives a family of representati{bﬁgﬂ) by

2n+1 _

YD (e lka, k) = g gk,
2n+1 -

PP ke, k) = Rgm ROk,
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D el k) = (L= g 2V Eibe kg — 1 k),
20D (Y kg, k)
= (1 — g 2kt b2y =itk 1y k41, k) (3.10)

fori = 2,...,n+1. The assumption of irreducibility implies that the vectks, . . . , k,,),
k; > 0} form an orthonormal basis 6{.

As for the even case, the formulé& 10) give bounded operators only fgy| > 1; and
as before, the representations fgr < 1 can be obtained by replacing all indidgswith
—k; — 1.

Again, as in the even case, we can verify tlaéf"ﬂ)(xl) is compact (indeed, trace

class) and that the ideal generated \,by”“) (x1) in the C*-algebra completion of the

imagewiz’””l) (A(Ss’”fl)) is K(H). The representationﬁiz"“) can be assembled into a

single representation by adjointable operators on a Hittigtt)-module. With this we can
verify that the ideal generated by in C(S7"*1) is C(S') ® K and this fact verifies the
extension3.2).

Putting together the results for even and odd spheres, we get a complete picture of the
set of irreducible representations of all these spheres.

For the odd spheres?'*, the set of irreducible representations (or equivalently, the
primitive spectrum of;’(SqZ"“)) is indexed by the union of + 1 copies ofS'. These run
from the representationﬁiznﬂ) of Sg"“ given in (3.10) down to the one-dimensional

representation$§1) that factor througlg(st).
For the even sphereS,f", the set of irreducible representations (or equivalently, the

primitive spectrum oﬂ(SqZ")) is indexed by the union of copies ofS! and two points.
The isolated points correspond to the two representaﬁéjﬁ’% specific tosg’l and given in

(3.7); the circles correspond to representatigbé?é”ﬂ) coming from lower odd-dimensional
spheres, down t6?.

4. K-homology and K-theory

We are now ready to study thié-homology andK-theory of the quantum Euclidean
spheres?é"—l. The K-homology classes will be given by Fredholm modules using the
representations constructed previously while kiéheory classes will be given by means
of suitable idempotents and unitaries.

In fact, in order to compute the pairing &ftheory with K-homology, it is more conve-
nientto first compute the Chern characters and then use the pairing between cyclic homology
and cohomology4]. Thus, together with the generatorsioftheory andk-homology we
shall also construct the associated Chern characters in the cyclic honhtﬂhM(S;V -]
and cyclic cohomologle*[A(Sé\’—l)], respectively.

It is worth recalling thek -theory and homology of the classical spheres.

For an even-dimensional sphef#, the groups are

Kos?y =72,  KY$?)=0, Ko(§8?)=72, = Ki(§?")=0.
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One generator of th&-theory [1] € K%(§%) is given by the trivial one-dimensional
bundle. The other generator &P (52") is the left-handed spinor bundle. Okehomology
generatord] € Ko(5%") is “trivial” and is the push-forward of the generator&§(x) = Z
by the inclusion : x — $2 of a point (any point) into the sphere. The other generator,
[u] € Ko(5?"), is theK-orientation ofS%* given by its structure as a spin manifg#.

For an odd-dimensional sphere, the groups are

KO(SZIH-].) o~ Z, K1(52n+1) o~ Z, KO(SZI’H-].) >~ Z, Kl(S2n+l) ~7.

The generator [1 K°(5%**1) is the trivial one-dimensional bundle. The generator of
K1(5?%+1) is a nontrivial unitary matrix-valued function as?**1. The generatore] e
Ko(52't1) is again the “trivial” element given by the inclusion of a point. The generator
[u] € K1(5%11) is theK-orientation ofs2**1 given by its structure as a spin manif¢4].
There is a natural pairing betwe&nrhomology andK -theory. If we pair f] with a vector
bundle we get the rank of the vector bundle, i.e., the dimension of its fibers. If weidair [
with a vector bundle it gives the “degree” of the bundle, a measure of its nontriviality.
Similarly, pairing with u] measures the nontriviality of a unitary.
The K-theory andk-homology of the quantum Euclidean spheres are isomorphic to that
of the classical spheres, i.e., for adyandg, K.[C(SY 1] = K*(SN~1) andK*[C(S) )]
~ K. (SN D).
In the case oK-theory, this was proven by Hong and Szyreki in[11] using their con-
struction of theC*-algebras as Cuntz—Krieger algebras of graphs. The gr&y@d K
were given as the cokernel and the kernel, respectively, of a matrix canonically associated
with the graph. The result faf-homology can be proven using the same techniiués]:
the groupsk® and K are now given as the kernel and the cokernel, respectively, of the
transposed matrix. ThE-theory and the&k-homology for the particular case Sf (in fact
for all Podl&s sphere§§c) was worked out ifil4] while for §3 = S, (2) it was spelled out
in [13].

4.1. K-homology

Because th&-homology of these deformed spheres is isomorphic taktHeomology
of the ordinary spheres, we need to construct two independent generators. First consider the
“trivial” generator ofKO[C(SéV—l)]. This can be constructed in a manner closely analogous
to the undeformed case.

As we have just described, the trivial generatokgt SV —1) is the image of the generator
of the K-homology of a point by the functorial ma, (1) : Ko(x) — Ko(S¥~1), where
¢ - x — SN~1listhe inclusion of a pointinto the sphere. The quantum Euclidean spheres do
not have as many points, but they do have some. We have seen that the relations among the
various spheres always include a homomorphi*ﬁ(mj]\’*l) — A(SY). Equivalently, every

Sé\"l has a circles as a classical subspace; thus for every S there is a point, i.e., the
homomorphismy " : csyh —c.

We can constructan element] e K°[C(S)~)] by pulling back the generator &°(C)
by 1/f§1). This construction factors throudty(S1). Becauses? is path connected, the points
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of S all define homotopic (and hend&homologous) Fredholm modules. Thus there is a
single K-homology classd;] € K°[C(S)~1)], independent of. € S™.

The canonical generator &°(C) is given by the following Fredholm module: the Hilbert
space i<C; the grading operator ig = 1; the representation is the obvious representation
of C onC; the Fredholm operator is 0. If we pull this back&8[C(S) )] usingy'?, then

the Fredholm module, is given in the same way but Wihhil) for the representation.
Giventhis construction afy , itis straightforward to compute its Chern charactéieh)
HC*[A(Sé\"l)]. It is the pull back of the Chern character of the canonical generator of
K9(C). An element of the cyclic cohomolodyCP is a trace. The degree 0 part of the Chern
character of the canonical generatotkf(C) is given by the identity maff — C, which
is trivially a trace. Pulling this back we find By = il) : A(Sflv‘l) — C which is
also a trace because it is a homomorphism to a commutative algebra. These are distinct
elements oHCO[ A (SY—1)] for different values of.. However, because the Fredholm mod-
uleseg;, all lie in the samekK-homology class, their Chern characters are all equivalent in
periodic cyclic cohomology. Indeed, applying the periodicity operator once, the cohomol-
ogy classe§(1//f\1)) € HCZ[A(Sé\’—l)] are all the same. For the computation of the pairing
betweenk-theory andk -homology, any trace determining the same periodic cyclic coho-
mology class can be used. The most symmetric choice of trace is given by avegr/é]ding
overir e St c C:

Of v o w, . dh
T@) = %; Vi@ 27k

The result is normalized®(1) = 1, and vanishes on all the generators. The higher degree
parts of chi(¢;) depend only on th&-homology classd, ] and can be constructed frotfl
by the periodicity operator.

4.1.1. K-homology generators for even spheres

We will now construct an elementfy] € KO[C(SqZ”)] by giving a suitable even Fredholm
modulep = (H, F, y).

Identify the Hilbert spaces for the representati¢ﬁ§’) given in(3.7)by identifying their
bases, and call thi. The representation for the Fredholm module is

vi=y ey

acting onH @ H. The grading operator and the Fredholm operator are, respectively:

) ()

Itis obvious that is odd (since it anticommutes with) and Fredholm (since itis invertible).
The remaining property to check is that for ang A(Sﬁ”), the commutatorf, y(a)]— is
compact. Indeed:
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0 ' (@) + v*(a)
[Ew<a>]=( o “.

v @ — v (@ 0
H (2n) (2n) _ @) . .
owever,y"(a) — =" (a) = ¥ '[a — o(a)] anda — o(a) is always proportional to
a power ofxg. Thus this is not only compact, but also it is trace class. This also shows
that we have (at least) a 1-summable Fredholm module. This is in contrast to the fact that
the analogous element &fy(S%*) for the undeformed sphere is given byafummable
Fredholm module.
The Chern charact@4] ch*(uey) has acomponentin degree 0%hey) € HCO[A(S(f”)].

The element ct(uey) is the trace:
Ha) = Tr(y(@) = Ty (@ — v (). (4.1)

The higher degree parts of ttuey) can be obtained via the periodicity operator.
For the spher€§ our Fredholm module coincides with the one constructdd4f

4.1.2. K-homology generators for odd spheres

The element fogd € K'[C(SZ*T1)] is most easily given by an unbounded Fredholm
module.

Letthe representatiofibe the directintegral (over e S) of the representatiomsiz”*l)
given in(3.10) The operator is the unbounded operaior= 1 ~(d/dx).

Referring t0(3.10) we see that the representativexafis proportional tor and as a
consequence:

[D, ¥(xD]- = ¥(x1), (4.2a)
whereas foi > 1 the representative af does not involve. and therefore:
[D,¥(x))]- =0, i>0. (4.2b)

Sincea +— [D, y(a)]- is a derivation, this shows thaD| /(a)]— is bounded for any
a € A(SZ"™1). Note however that for > 0 (i.e., except fos) all eigenvalues oD have
infinite degeneracy and therefoPedoes not have compact resolvent.

This triple can be converted into a bounded Fredholm module by applying a cutoff
function to D. A convenient choice i& = x(D) where

1 m > 0,
x(m) =
-1 :m<0.

To be more explicit, use a Fourier series basis for the Hilbert space:
ko, k1, - s kn) i= ANOlka, . ),

in which the representation is given by
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Yk, ... k) =g TR+ 1, k),

YD ko, .. k) =g T kg — 1, k),

Yo, - - k) = (1 — g iVt k=1, k),
YDk, ... k) = (L — g 2Kt 2g=itthgg G+ 1 k)

fori =1, ... ,n. The Fredholm operator is then given by
Flko, ..., ky) = x(ko)lko, ... , kn).

The only condition to check is that the commutatét {/(a)] - is compact for any: €
C(Sg"“). Sincea — [F, y¥(a)]- is a derivation, it is sufficient to check this on generators.
One finds F, ¥(x;)]- = 0fori > 1 and

2¢~Uattk) |1 kg o k) iko=0,
[F, y(xD)]-lko, ..., kn) = (4.3)
0 “ko # 0,

which is indeed compact, and in fact trace class.

Thus, this is a 1-summable Fredholm module. Again this is in contrast to the fact that the
analogous element &f; (52+1) for the undeformed sphere is given b§2a+1)-summable
Fredholm module.

Its Chern charactd#] begins with c/?(uoqd) € HCYA(S2"+1)] which is given by the
cyclic 1-cocyclep defined by

o(a, b) == STr(Y(@[F, y(b)]-). (4.9

The higher degree parts of tiuogg) can be obtained via the periodicity operator.
For the spherég = SU,(2) our Fredholm module coincides with the one constructed in
[13].

4.2. K-theory for even spheres

For S we construct two classes in ttietheory groupko[C(S2")] = Z2.
The first class is trivial. The element [¥ KO[C(Sg")] is the equivalence class ofd

C(SqZ") which is of course an idempotent. In order to compute the pairing dttomology;,
we need the degree 0 part of its Chern characteflghwhich is represented by the cyclic
cycle 1.

The second, nontrivial, class was presentefL#.! It is given by an idempoterd o,
constructed from the unipote(®.7) as

e@n) = %(1 + U2n))- (4.5)
Its degree 0 Chern charactergth,)) € HCo[A(S(f”)], is
cholean) = trien) = 2" 1 + Str(un) = 271+ 3@ — D"xo,

1 Again, for the sphersj the idempotenf4.5)was already presented [ib4].
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since the recursive definitidi2.7) of the unipotent:,) shows that

tr(uen) = (@1 — Dtr(uea—2) = (@1 — 1)"xo.

Now, we can pair these classes with the tihomology elements which we constructed
in Section 4.1First

(er, [1]) =701 = 1,
which is hardly surprising. Second, the “rank” of the idempotesy, is
(e, ecn)) = rO(Choe(zn)) =21
Also not surprising is the “degree” of [1]:
(pew [1]) =D = Ty @) -y @] =TrA - 1) =0.
The more complicated pairing is
(Lev, e@n) = T (Choe@n) = Troy{?” o 1— )@t + 3[g7 - 1]"x0)
= (¢t = D" Ty 2" o).
So, we need to compute
0o . . n
Ty ol i= 3 - 3 ot thin (Z q—k) —@—g
ko=0  k,_1=0 k=0
And, in turn, we get
(1evs e2n)) = (=D)".

The fact that the matrix of pairings is invertible over the integers proves that the classes

[]] [e(2n)]
el | 1T 2™
ue] | O (=D)"
[1], [e2n)] € Ko[C(SZM)] = Z2 and 1], [1ev] € KO[C(S7")] = Z? are generators of these
groups.
Classically, the “degree” of the left-handed spinor bundle-is So, theK-homology
class which correctly generalizes the classi¢airientation classj] € Ko(5%") is actually

(D" ey

4.3. K-theory for odd spheres
Again, define [1]e KO[C(S3”+1)] as the equivalence class ofelC(SqZ"”). The pairing
with our element4;] € K°[C(S2"1)] is again
(ex, [1]) == (1) = L.
There is no other independent generatoKijiC(Sg’”l)] =7.
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Instead,Kl[C(Sg”H)] = Z is nonzero. So we need to construct a generator there. An
odd K-theory element is an equivalence class of unitary matrices over the algebra. We can
construct an appropriate sequence of unitary matrices recursively, just as we constructed
the unipotents and idempotents.

Let

-1
Xn+1 q Von-1
Vien+1) = ! b (4.6)
_V(*Zn—l) X1

with V(1) = x1. By using the defining relation@.5a) and (2.5bdne directly proves that
this is unitary:V(2, 41 V(*2n+l) = V(*2n+l) Vonty = 1.

In order to pair ouk -homology elementfodd € K*[C(S7"+1)]with the unitaryV(z, 1),
we need the lower degree part%c(h/(gnﬂ)) € HC1[A(S§"+1)] of its Chern character. It is
given by the cyclic cycle:

chi/2(Vant) = str(Vanty ® Vit = Yoty ® Vient)
= %(q_2 — D" (x1 @ x] — x] @ x1). 4.7)

Now, compute the pairing:

(odd> V2n+1)) = (@, Ch2(Vi2ut1)))
=—(q 2 - D"p(x}. x1) = —3(q 2 = )" Tr(Y()IF, Y(x1)]-).
We have already computed;[y/(x1)]— in Eq. (4.3) From that, we get
2q~ 2kt Hka)|0, ka, ... ky) ko =0,
VDI, v(x)]-lko, ... . kn) =
0 tko #£ 0.
Thus

Tr(y(xDIF, Y(x1)]-) = Z Z 2g~2ka+-+hn)

k1=0 k,=0
00 n
— 2 (Z q—2k> — 2(1 _ q—Z)—n_
k=0

Finally, this gives

(odds Viznt1) = (=D)L,

This proves the classe¥b,11)] € K1[C(S7"th)] and [uodd € K*[C(S2*™1)] are nonzero
and that neither may be a multiple of another class. Ths[1)] and [uoddl are indeed
generators of these groups.
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5. Final remarks

Recently, in[2], a 3-summable spectral triple was constructed foy @)Y this has been
thoroughly analyzed if5] in the context of the noncommutative local index formula of
[6]. Also, a 2-summable spectral triple on @) was constructed if8] together with a
spectral triple on the sphenséC of Podles [16].

It would be interesting to compare our 1-summable Fredholm modules for the
spheres3 = SU,(2) and for the equator sphe@ = 52oo with these spectral triples.

It seems likely that for the same spheres they determine the dgrhemology
class.

It would also be interesting, although much more challenging, to extend (some of) the
analysis of[5] to all spheres, notably odd on#,”“, with a suitable modification of the
unbounded Fredholm modules constructe8éction 4.1.2
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